二刷代码随想录训练营Day 38|322. 零钱兑换、279.完全平方数、139.单词拆分

1.零钱兑换

代码:

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        vector<int> dp(amount + 1,INT_MAX);
        dp[0] = 0;
        for(int i = 0; i < coins.size(); i++){
            for(int j = coins[i]; j <= amount; j++){
                if(dp[j - coins[i]] != INT_MAX){
                    dp[j] = min(dp[j], dp[j - coins[i]] + 1);
                }
            }
        }
        if(dp[amount] == INT_MAX) return -1; 
        return dp[amount];
    }
};

 note:

注意,如果dp[j]没有被重新赋值(说明没有能够装满其背包的情况),不能在递推公式里使用。以及结果也要判断。

dp数组的含义:用下标为[0,i]的coins的元素(不限数量)去填满容量为j的背包,所用的数量最少为dp[j]

递推公式:如果装的下第j个物品,且dp[j - coins[i]]已经被重新赋值过,dp[j] = min(dp[j], dp[j - coins[i]])

dp数组的初始化:因为求最小值,所以将所有元素初始化为INT_MAX,同时按照定义去初始化dp[0] = 0

遍历顺序:这道题不涉及组合和排列的区别,所以先遍历背包还是物品都可以。不限数量,是完全背包问题,所以遍历背包的时候,要正序遍历。

2.完全平方数

代码:

class Solution {
public:
    int numSquares(int n) {
        vector<int>dp (n + 1,INT_MAX);
        dp[0] = 0;
        for(int i = 1; i * i <= n; i++){
            for(int j = i * i; j <= n; j++){
                // 因为有1,所以肯定每个数都能写成完全平方数相加的形式
                dp[j] = min(dp[j - i * i] + 1,dp[j]);
            }
        }
        return dp[n];
    }
};

 note:

注意点:这里物品的遍历的终止条件是 i * i <= n,其实挺好想的。以及i从1开始遍历,这里其实是因为我们平时使用i的时候,都是把它当数组下标来遍历的。这里可以看成i直接变成了我们遍历的数组的元素值,就是直接是物品的重量的。

以及,因为完全平方数有1,所以肯定每个数都有对应的“解”,和上题有可能没有解的情况不一样。

剩下的,和上题基本没区别,我就懒得写了。

3.单词拆分

代码:

class Solution {
public:
    bool wordBreak(string s, vector<string>& wordDict) {
        unordered_set<string> wordSet(wordDict.begin(),wordDict.end());
        vector<bool> dp(s.size() + 1,false);
        dp[0] = true;
        for(int j = 1; j <= s.size(); j++){
            for(int i = 0; i < j; i++){ // 截取[i,j - 1]的字符串去判断有没有再wordDict出现过
                string word = s.substr(i,j - i);
                if(wordSet.find(word) != wordSet.end() && dp[i]){
                    dp[j] = true;
                }
            }
        }
        return dp[s.size()];
    }
};

 note:

dp数组的含义:长度为j的从下标为0开始的子串是否可以用给定的字符串数组填满

递推公式:如果[0,i - 1]的子串已经判断可以被填满,且下标为[i , j - 1]的下标也可以被填满,那么dp[j]也是true

dp数组的初始化:首先全初始化为false,不然就全对了,判断个什么。以及dp[0]要为true,没有实际含义,完全是为了递推公式可以正常推导。

遍历顺序:这道题是排列问题。因为我们是根据前面已经判断好的子串来确定后面的子串是否被填满的。而很明显子串要被物品拼满,是要注重顺序的,不同的顺序对应的拼成的子串是不同的。

所以,先遍历背包,再遍历物品,且背包容量必须正序遍历。

4.背包问题总结

代码随想录 (programmercarl.com)

在此总结一下背包问题的注意事项:

背包问题的dp数组在定义的时候,一般大小为bagweight + 1,因为背包的容量从0开始,所以个数要额外加1

01背包二维dp数组:遍历顺序无所谓,初始化的时候,要把第一行第一列的元素处理好,按照定义来就好了。其余元素初始化成多少都行,因为会被覆盖的

01背包 一维dp数组:先遍历物品,再遍历背包,背包要倒序遍历。

完全背包 一维dp数组:先遍历物品还是背包都可以,背包要正序遍历。

完全背包 一维dp数组 组合问题:先遍历物品,再遍历物品,背包要正序遍历。

背包问题 一维dp数组 排列问题:先遍历背包,再遍历物品,背包要正序遍历。

关于排列组合的区别的解释:

        就像我们在回溯算法里使用startIndex一样,组合问题,每次都是将物品遍历完就不会使用了,换句话说,物品出现的顺序是固定的。背包问题也是,先遍历物品,再遍历背包,就是指定了物品,针对一个物品去遍历不同的背包容量,使用过后就不会再去用了。
        排列问题就不一样。锁定一个背包容量,去遍历不同的物品,就会出现之前使用的物品,物品的顺序是不固定的,不同的顺序算所不同的种类了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值