二刷代码随想录训练营Day 39|力扣198.打家劫舍、213.打家劫舍II、337.打家劫舍III

1.打家劫舍

代码:

class Solution {
public:
    int rob(vector<int>& nums) {
        if(nums.size() == 0) return 0;
        if(nums.size() == 1) return nums[0];
        vector<int> dp(nums.size(),0);
        dp[0] = nums[0];
        dp[1] = max(nums[0],nums[1]);
        for(int i = 2; i < nums.size(); i++){
            dp[i] = max(dp[i - 1], dp[i - 2] + nums[i]);
        }
        return dp[nums.size() - 1];
    }
};

 note:

dp数组的含义:考虑下标为[0,i]的房间(只是考虑,并不是一定会偷),所能偷的最大金额为dp[i]

递推公式:对于第i个房间,无非有两种情况,偷或者不偷。如果不偷,那就可以考虑偷下标为[0,i - 1]的房间,也就是dp[i - 1];如果偷,那么第i - 1间房子就不能考虑偷了,也就是dp[ i - 2] + nums[i]。 dp[i] = max(dp[i - 1], dp[i - 2] + nums[i ]) 

dp数组的初始化:递推公式很明显可以从中看出,我们需要初始化,dp[0] = nums[0] dp[1] = max(nums[0],nums[1])

遍历顺序:后面的元素需要依赖前面的元素的值。

2.打家劫舍2

代码:

class Solution {
public:
    // 【】
    int robrange(vector<int>& nums, int start, int end){
        if(start == end) return nums[start];
        vector<int> dp(nums.size(),0);
        dp[start] = nums[start];
        dp[start + 1] = max(nums[start], nums[start + 1]);
        for(int i = start + 2; i <= end; i++){
            dp[i] = max(dp[i - 1],dp[ i - 2] + nums[i]);
        }
        return dp[end];
    }
    int rob(vector<int>& nums) {
        if(nums.size() == 0) return 0;
        if(nums.size() == 1) return nums[0];
        int result1 = robrange(nums, 0, nums.size() - 2);
        int result2 = robrange(nums, 1, nums.size() - 1);
        return max(result1, result2);
    }
};

 note:

这道题首尾相连,因此第一个房间和最后一个房间不能同时考虑。那就将打家劫舍1的代码封装成一个函数。每次传入截掉首元素或尾元素的数组进行dp数组的计算。最后将这两种情况的结果取个最大值。

易错点:在函数里,传入了start和end两个参数,首先要去考虑两者相等的情况进行一个结果的返回,其次要注意在递推的for循环里i从start + 2开始

剩下的东西和上一题一样,就不去写了。

3.打家劫舍3

代码:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    unordered_map<TreeNode*, int> umap;
    int rob(TreeNode* root) {
        if(root == NULL) return 0;
        if(root->left == NULL && root->right == NULL) return root->val;
        if(umap[root]) return umap[root];
        // 偷parent节点
        int val1 = root->val;
        if(root->left) val1 += rob(root->left->left) + rob(root->left->right);
        if(root->right) val1 += rob(root->right->left) + rob(root->right->right);
        // 不偷parent结点
        int val2 = rob(root->left) + rob(root->right);
        umap[root] = max(val1,val2);
        return max(val1,val2);
    }
};

 note:

其实还是按照偷当前结点 或 不偷当前结点。这道题也不用写什么dp数组了,就依靠后序遍历一层一层地向上返回就行了。

以及这个过程其实会超时,涉及到了重复计算。所以可以用一个map来去记录每个结点对应的最大可偷金额,在一开始如果map里有相应的记录,就直接返回。如果没有,就去记录本次结点的对应值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值