1.打家劫舍
代码:
class Solution {
public:
int rob(vector<int>& nums) {
if(nums.size() == 0) return 0;
if(nums.size() == 1) return nums[0];
vector<int> dp(nums.size(),0);
dp[0] = nums[0];
dp[1] = max(nums[0],nums[1]);
for(int i = 2; i < nums.size(); i++){
dp[i] = max(dp[i - 1], dp[i - 2] + nums[i]);
}
return dp[nums.size() - 1];
}
};
note:
dp数组的含义:考虑下标为[0,i]的房间(只是考虑,并不是一定会偷),所能偷的最大金额为dp[i]
递推公式:对于第i个房间,无非有两种情况,偷或者不偷。如果不偷,那就可以考虑偷下标为[0,i - 1]的房间,也就是dp[i - 1];如果偷,那么第i - 1间房子就不能考虑偷了,也就是dp[ i - 2] + nums[i]。 dp[i] = max(dp[i - 1], dp[i - 2] + nums[i ])
dp数组的初始化:递推公式很明显可以从中看出,我们需要初始化,dp[0] = nums[0] dp[1] = max(nums[0],nums[1])
遍历顺序:后面的元素需要依赖前面的元素的值。
2.打家劫舍2
代码:
class Solution {
public:
// 【】
int robrange(vector<int>& nums, int start, int end){
if(start == end) return nums[start];
vector<int> dp(nums.size(),0);
dp[start] = nums[start];
dp[start + 1] = max(nums[start], nums[start + 1]);
for(int i = start + 2; i <= end; i++){
dp[i] = max(dp[i - 1],dp[ i - 2] + nums[i]);
}
return dp[end];
}
int rob(vector<int>& nums) {
if(nums.size() == 0) return 0;
if(nums.size() == 1) return nums[0];
int result1 = robrange(nums, 0, nums.size() - 2);
int result2 = robrange(nums, 1, nums.size() - 1);
return max(result1, result2);
}
};
note:
这道题首尾相连,因此第一个房间和最后一个房间不能同时考虑。那就将打家劫舍1的代码封装成一个函数。每次传入截掉首元素或尾元素的数组进行dp数组的计算。最后将这两种情况的结果取个最大值。
易错点:在函数里,传入了start和end两个参数,首先要去考虑两者相等的情况进行一个结果的返回,其次要注意在递推的for循环里i从start + 2开始
剩下的东西和上一题一样,就不去写了。
3.打家劫舍3
代码:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
unordered_map<TreeNode*, int> umap;
int rob(TreeNode* root) {
if(root == NULL) return 0;
if(root->left == NULL && root->right == NULL) return root->val;
if(umap[root]) return umap[root];
// 偷parent节点
int val1 = root->val;
if(root->left) val1 += rob(root->left->left) + rob(root->left->right);
if(root->right) val1 += rob(root->right->left) + rob(root->right->right);
// 不偷parent结点
int val2 = rob(root->left) + rob(root->right);
umap[root] = max(val1,val2);
return max(val1,val2);
}
};
note:
其实还是按照偷当前结点 或 不偷当前结点。这道题也不用写什么dp数组了,就依靠后序遍历一层一层地向上返回就行了。
以及这个过程其实会超时,涉及到了重复计算。所以可以用一个map来去记录每个结点对应的最大可偷金额,在一开始如果map里有相应的记录,就直接返回。如果没有,就去记录本次结点的对应值。