一、流行病建模
自然和社会中的很多现象都可以被描述为网络上的传播过程,如生物传播、数字传播、社交传播等
可划分性假设-流行病模型按照个体所处的发病阶段对其分类,最简单的划分方式假设每个个体都处于以下三种阶段之一:
- 易感染(S):尚未接触病原体的健康个体
- 易感染(I):已解除病原体并能感染他人的个体
- 已康复(R):感染后康复的个体,不具备感染能力
均匀混合假设-认为每个个体将以相同的概率接触已感染的个体。这一假设使得我们不必知道确切的疾病传播所依赖的接触网络,而认为任何人都可以感染其他人。
三种常见的流行病模型:
① 易感染--已感染模型(SI模型)
用来描述那些染病后不可能治愈的疾病,或对于突然爆发尚缺乏有效控制的流行病。个体只有已感染S和已感染I两种可能的状态。
② 易感染--已感染--易感染模型(SIS模型)
与SI模型相同,SIS模型考虑易感染和已感染两个阶段。不同之处在于,已感染个体以固定概率康复,重新成为易感染个体。
则SIS模型的动力学方程式SI动力学方程的扩展:
其中u是康复率,ui是总人口的康复率。
被称为基本再生数。它表示在所有易感染人群中,被已感染个体所感染的平均个体数。
或者说,是在理想环境下,一个已感染个体引发的新增感染人数。
若超过1,特征时间 t 是正数,传播过程将收敛到“地方病”平衡点。
越高,传播过程越快。
若 < 1,特征时间t是负数,传染病最终消亡。
③ 易感染--已感染--已康复模型(SIR)模型
在SIR模型中,感染个体不再变为易感个体而是以概率β变为免疫个体(处于移除状态),感染机制可以描述如下:
二、网络上的流行病模型
网络拓扑大大改变了流行病模型的预测能力
① 在大规模无标度网络上t = 0,这意味着病毒可以立即传播到绝大多数节点。
② 在大规模无标度网络上,这意味着即使病毒的传播率很低,也可以在人群中长期存在。