网络上的传播现象

一、流行病建模

自然和社会中的很多现象都可以被描述为网络上的传播过程,如生物传播、数字传播、社交传播

可划分性假设-流行病模型按照个体所处的发病阶段对其分类,最简单的划分方式假设每个个体都处于以下三种阶段之一:

  • 易感染(S):尚未接触病原体的健康个体
  • 易感染(I):已解除病原体并能感染他人的个体
  • 已康复(R):感染后康复的个体,不具备感染能力

均匀混合假设-认为每个个体将以相同的概率接触已感染的个体。这一假设使得我们不必知道确切的疾病传播所依赖的接触网络,而认为任何人都可以感染其他人。

三种常见的流行病模型:

① 易感染--已感染模型(SI模型)

用来描述那些染病后不可能治愈的疾病,或对于突然爆发尚缺乏有效控制的流行病。个体只有已感染S和已感染I两种可能的状态。

② 易感染--已感染--易感染模型(SIS模型)

与SI模型相同,SIS模型考虑易感染和已感染两个阶段。不同之处在于,已感染个体以固定概率康复,重新成为易感染个体。

则SIS模型的动力学方程式SI动力学方程的扩展:\frac{di}{dt} = \beta \left \langle k \right \rangle i (1 - i)-ui

其中u是康复率,ui是总人口的康复率。

 R_{0}被称为基本再生数。它表示在所有易感染人群中,被已感染个体所感染的平均个体数。

或者说,R_{0}是在理想环境下,一个已感染个体引发的新增感染人数。

R_{0}超过1,特征时间 t 是正数,传播过程将收敛到“地方病”平衡点。R_{0}越高,传播过程越快。

R_{0}  < 1,特征时间t是负数,传染病最终消亡。

③ 易感染--已感染--已康复模型(SIR)模型

在SIR模型中,感染个体不再变为易感个体而是以概率β变为免疫个体(处于移除状态),感染机制可以描述如下:

S(i) + I(j)\overset{\alpha }{\rightarrow} I(i) + I(i)

I(i)\overset{\beta }{\rightarrow}R(i)

二、网络上的流行病模型

网络拓扑大大改变了流行病模型的预测能力

① 在大规模无标度网络上t = 0,这意味着病毒可以立即传播到绝大多数节点。

② 在大规模无标度网络上\lambda _{c} = 0,这意味着即使病毒的传播率很低,也可以在人群中长期存在。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

几两春秋梦_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值