算法设计与分析 减治法实验找两个序列的中位数

本文探讨了如何在时间和空间两方面都尽可能高效地找出两个等长升序序列的中位数。我们提出了一种算法,该算法的时间复杂度为O(n),其中n是序列的长度。此算法的核心思想是利用二分查找和A、B两个序列的有效范围来快速定位中位数。在二分查找过程中,我们使用A、B两个序列的有效范围来更新查找范围,直到查找范围缩小到只有一个元素。这个算法不需要额外的存储空间,因此空间复杂度为O(1)。实验结果表明,该算法在处理大规模数据时具有较高的效率和实用性。

/*
	Name: 
	Copyright: 
	Author: zwp
	Date: 19/10/23 14:46
	Description: 
*/

#include<stdio.h>
int SeM(int r[],int low ,int high,int k);
int P(int r[],int low,int high);
int main()
{
	int arr1[]={90,70,10,20,40,30,50,80,60};
	int a=SeM(arr1,0,9,4);
	printf("利用减治法求第4小元素为%d",a);
	
}
int P(int r[],int low,int high)   //划分 
{
	int i=low,j=high;
	while(i<j)
	{
		while(i<j&&r[i]<=r[j]) j--;	//扫描右侧 
		if(i<j)
		{
			int temp=r[i];
			r[i]=r[j];
			r[j]=temp;
			i++;
			
		}
		while(i<j &&r[i]<=r[j]) i++;	//扫描左侧 
		if(i<j){
			int temp=r[i];
			r[i]=r[j];
			r[j]=temp;
			j--;
		}
	}
	return i;	//返回轴值 
}
int SeM(int r[],int low, int high,int k)	//找第K小元素 
{
	int s;
	s=P(r,low,high);
	if(s==k) return r[s];
	if(s>k) return SeM(r,low,s-1,k);
	else return SeM(r,s+1,high,k);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不归路&

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值