本文探讨了如何在时间和空间两方面都尽可能高效地找出两个等长升序序列的中位数。我们提出了一种算法,该算法的时间复杂度为O(n),其中n是序列的长度。此算法的核心思想是利用二分查找和A、B两个序列的有效范围来快速定位中位数。在二分查找过程中,我们使用A、B两个序列的有效范围来更新查找范围,直到查找范围缩小到只有一个元素。这个算法不需要额外的存储空间,因此空间复杂度为O(1)。实验结果表明,该算法在处理大规模数据时具有较高的效率和实用性。
/*
Name:
Copyright:
Author: zwp
Date: 19/10/23 14:46
Description:
*/
#include<stdio.h>
int SeM(int r[],int low ,int high,int k);
int P(int r[],int low,int high);
int main()
{
int arr1[]={90,70,10,20,40,30,50,80,60};
int a=SeM(arr1,0,9,4);
printf("利用减治法求第4小元素为%d",a);
}
int P(int r[],int low,int high) //划分
{
int i=low,j=high;
while(i<j)
{
while(i<j&&r[i]<=r[j]) j--; //扫描右侧
if(i<j)
{
int temp=r[i];
r[i]=r[j];
r[j]=temp;
i++;
}
while(i<j &&r[i]<=r[j]) i++; //扫描左侧
if(i<j){
int temp=r[i];
r[i]=r[j];
r[j]=temp;
j--;
}
}
return i; //返回轴值
}
int SeM(int r[],int low, int high,int k) //找第K小元素
{
int s;
s=P(r,low,high);
if(s==k) return r[s];
if(s>k) return SeM(r,low,s-1,k);
else return SeM(r,s+1,high,k);
}