线性方程组求解

本文介绍了线性方程组的求解方法,包括利用矩阵除法时应注意的错误示例和正确代码。通过分析矩阵的秩(rank),讨论了当rank(A)=rank(C)=r时,线性方程组的解的情况。如果r=n,方程组有唯一解;否则,可能无解并需借助最小二乘法。文章还探讨了如何在Matlab中实现这些概念。
摘要由CSDN通过智能技术生成

一.利用矩阵除法:

常出现的错误:/,\造成的矩形维度不一致情况。

错误示范:

A=[1,1,1    %x1+x2+x3=6
   0,4,-1   %4x2-x3=5
   2,-2,1]  %2x1-2x2+x3=1
b=[6;5;1]
x=b/A    %出现矩形维度不一致,应为原式为Ax=b,维度一致需要x=A\b

正确代码:

A=[1,1,1    %x1+x2+x3=6
   0,4,-1   %4x2-x3=5
   2,-2,1]  %2x1-2x2+x3=1
b=[6;5;1]
x=A\b          %Ax=b>>>x=A\b

 

二.判断线性方程组解:

A*x=b 其中A是m*n的矩阵,也就是说有m个方程n个未知数;b为m*p的矩阵,也就是有p组b

我们做C=[A b]

由线性代数知识我们知道:

(1)rank(A)=rank(C)=r时,方程组有解

若r=n则,方程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值