Python深度学年设计-旅游景点评论情感极性分析

在现代信息社会中,互联网已经成为人们获取信息的重要渠道之一。社交媒体、旅游网站和在线评论平台上充斥着大量用户生成的内容,这些内容不仅丰富了信息的多样性,也为用户之间的互动提供了平台。旅游景点评论作为其中一种重要的信息来源,为潜在游客提供了决策支持。然而,由于评论数量庞大且内容复杂,如何有效地分析这些评论并从中抽取有价值的信息,成为了一项具有挑战性但非常有意义的任务。采用B/S架构,前端使用Vue框架设计出用户友好界面,后端使用Flask框架快速处理前端请求,实现了用户登录、样例展示、模型训练和模型测试等功能。以适应多场景下的灵活应用,提升教育与办公的智能化水平。同时也使得学生从中学习深度学习模型的训练和预测,及B/S系统的设计与实现。

本学年设计给出北京各个景点评论数据集,该数据集共有两列,第一列是各个景点的评论,第二列是该评论的极性,1代表好评2代表差评,共48935行。运用Python自带的Jieba分词器,在此基础上又添加了一部分专属名词典到jieba分词库中,并将一些标点、特殊符号删除以实现数据清洗、分词工作。对数据集进行预处理,并通过调参训练出最优的深度学习算法模型,采用Vue框架和Flask框架搭建B/S系统,实现对各个景点评论进行精确分析,并对模型评价指标进行可视化展示。

 

数据预处理
    # 数据清洗自定义词典文件
new_words_file = 'D:/lean/keywords.txt'
# 待清理的文本文件
input_csv = 'D:/lean/test2.csv'
output_csv = 'D:/lean/output.csv'
# 检测文件编码
def detect_encoding(file_path):
    with open(file_path, 'rb') as f:
        result = chardet.detect(f.read())
    return result['encoding']
# 加载自定义词
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值