- 博客(21)
- 收藏
- 关注
原创 TDT Loss Takes It All论文阅读
本文提出了 TDT Loss 这一无参数、即插即用的优化目标,将 TDT 学习整合到非自回归模型中,能够兼顾自回归和非自回归方法的优点。TDT Loss 使用符号不一致比例作为自适应权重 ρ ,动态地平衡了对未来序列预测的学习和对细粒度 TDT 拟合的学习。 TDT Loss 以可忽略不计的额外成本(计算复杂度 O(H),内存 O(1)显著提高了 SOTA 非自回归模型的预测性能。
2025-12-11 18:51:53
815
原创 Selective Learning for Deep Time Series Forecasting论文阅读
在这项工作中,我们引入了选择性学习,这是一种新的策略,通过在可推广的时间步上选择性地计算回归损失来减轻深度TSF中的过拟合。(基于剩余熵)和异常掩模(利用残余下限估计),动态地过滤不可推广的时间步,允许模型专注于强大的模式。在八个真实世界的数据集上进行的广泛实验验证了选择性学习可以提高预测精度和模型的泛化能力。这项工作的范围目前仅限于域时间序列预测。未来的工作可以研究对不同时间序列分析任务(例如,分类,插补)的推广,并探索时间序列基础模型的预训练策略。
2025-11-27 17:52:37
771
原创 Patch-wise Structural Loss for Time Series Forecasting论文阅读
在这项研究中,我们通过引入Patch-wise Structural(PS)loss来解决传统逐点损失函数的局限性,这是一种利用局部统计特性进行更精确结构对齐的新方法。通过集成块级分析和动态加权策略,PS损失提高了预测精度,增强了多变量时间序列模型的泛化能力,为复杂时间序列数据的准确建模建立了新的基准。在未来的工作中,我们将专注于开发一种新的损失函数和模型,以解释预测中的局部和全局结构动态。
2025-11-21 17:25:35
1112
原创 DBLoss: Decomposition-based Loss Function for Time Series Forecasting 论文阅读
在这项研究中,我们提出DBLoss来解决传统的MSE有时无法准确捕捉预测范围内的季节性或趋势,即使在前向传播中使用分解模块来分别对趋势和季节性建模时,我们的方法也是如此。具体来说,我们的方法使用指数移动平均将时间序列分解为预测范围内的季节性和趋势分量,然后分别计算每个分量的损失,然后对它们进行加权。通过将DBLoss引入基线模型,我们在八个真实世界的数据集上实现了超越最先进水平的性能。
2025-11-12 19:41:12
923
原创 TimeBridge: Non-Stationarity Matters for Long-term Time Series Forecasting论文阅读
本文针对多元时间序列预测中非平稳性的双重挑战,特别关注其对短期和长期建模的不同影响,提出了一种新的框架TimeBridge,它弥补了非平稳性和依赖建模之间的差距,通过使用集成注意力来缓解短期非平稳性,使用协集成注意力来保持长期依赖性,TimeBridge有效地捕捉了局部动态和长期协整。在不同数据集上的综合实验表明,TimeBridge在短期和长期预测任务中始终达到最先进的性能。此外,它在CSI 500和S&P 500指数上的出色表现突出了它对复杂现实世界金融场景的鲁棒性和适应性。
2025-11-08 19:15:45
908
原创 TimeEmb: A Lightweight Static-Dynamic Disentanglement Framework for Time SeriesForecasting 论文阅读
在本文中,我们使用结构良好的分解框架解决时间序列预测中时间非平稳性的关键问题。我们引入了 TimeEmb,这是一种轻量级但有效的架构,结合了全局时间嵌入和频谱过滤。 TimeEmb 能够对解开的时变和时不变分量进行单独处理。具体来说,我们利用可学习的嵌入来保留时间序列内的长期不变模式。此外,我们设计了一个频率滤波器来捕获时变分量的时间依赖性。大量的实验证实,我们的方法不仅获得了最先进的性能,而且还通过其双路径设计提供了对时间模式的可解释的见解。它在性能和效率之间实现了出色的平衡。此外,它可以轻松地与现有
2025-10-31 17:36:13
659
原创 Retrieval Augmented Time Series Forecasting 论文笔记
本文提出RAFT方法,通过引入检索模块解决时间序列预测中的复杂模式学习问题。该方法受大型语言模型RAG思想启发,直接从历史数据中检索相似模式片段,减轻模型学习负担并增强对罕见模式的利用。RAFT采用多周期检索架构,通过下采样捕获不同时间尺度特征,并使用皮尔逊相关系数计算相似度。实验表明,RAFT在10个基准数据集上平均胜率达86%,显著优于现有方法。该创新点在于将检索机制引入时间序列预测,突破了传统模型依赖固定窗口的局限,能够从整个历史中寻找相关模式。
2025-10-26 19:41:08
833
原创 LangExtract:基于LLM的信息抽取框架 学习笔记
将每次的提取,映射到其在源文本中的具体位置,支持视觉高亮显示,便于追溯和验证。通过 few-shot 和 Gemini 的 Controlled Generation,保证生成的结构化结果,严格遵循预定义的JSON Schema。通过优化的文本分块、并行处理和多轮提取策略,克服了大型文档提取中的“大海捞针”难题,从而提高召回率。即时生成一个独立的交互式HTML文件,以可视化和审查实体及其原始上下文,方便审核和错误分析。即便是千级实体亦可流畅浏览。
2025-10-16 19:17:10
823
原创 Adaptive Multi-Scale Decomposition Framework for Time Series Forecasting
本文提出了一种时间序列预测的自适应多尺度分解(Adaptive Multi-Scale Decomposition,AMD)框架,通过将时间序列数据分解为不同尺度上的多个时间模式,并自适应地聚合这些模式,来解决时间序列数据固有的复杂性问题。综合实验表明,AMD在各种数据集上的长期和短期预测任务中始终达到最先进的性能,显示出上级效率和效力。
2025-10-11 18:48:20
945
原创 CSformer: Combining Channel Independence and Mixing for Robust Multivariate Time Series Forecasting
本文总结了通道独立模型和通道混合模型,指出通道独立后再进行通道混合是一种上级策略。在此基础上,提出了一种两阶段注意力机制CSformer,它平衡了通道独立和通道混合对多变量时间序列的鲁棒建模。在未来的工作中,我们将研究将信道独立性和信道混合相结合并减少它们的计算需求的更合理的方法。
2025-09-28 19:39:40
609
原创 Unlocking the Power of Patch: Patch-Based MLP for Long-Term Time Series Forecasting论文阅读
本文质疑Transformer在长期时间序列预测中的有效性,认为其优势可能源于补丁机制而非架构本身。研究提出PatchMLP模型,采用多尺度补丁嵌入捕捉局部和全局特征,通过特征分解和交替变量内/间MLP层增强预测能力。在8个基准数据集上的实验表明,PatchMLP超越所有Transformer基线,验证了注意力机制非必需性。消融实验证实各模块的必要性,参数敏感性分析显示模型稳定性。研究为时间序列预测提供了更高效简洁的解决方案。
2025-09-21 16:06:56
795
原创 RETHINKING CHANNEL DEPENDENCE FOR MULTIVARIATE TIME SERIES FORECASTING: LEARNING FROM LEADING INDICA
通过广泛的实验,作者验证了 LIFT 方法在多个真实世界数据集上的有效性。LIFT 不仅能够显著提升 CI 和 CD 模型的性能,还能够通过轻量级实现 LightMTS 在保持高性能的同时减少模型参数。实验结果表明,LIFT 方法在多变量时间序列预测任务中具有广泛的应用前景。
2025-03-15 16:17:22
1122
原创 Non-stationary Transformers:Exploring the Stationarity in Time Series Forecasting论文笔记
本文从平稳性的角度对时间序列预测进行了研究。与之前简单地衰减非平稳性导致过度平稳化的研究不同,我们提出了一种有效的方法来增加序列平稳性并更新内部机制以重新整合非平稳信息,从而同时提高数据可预测性和模型预测能力。实验表明,我们的方法在六个真实世界的基准测试中表现出了很强的通用性和性能。
2025-03-07 19:46:23
1128
1
原创 Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting论文笔记
提出了Autoformer作为一种分解架构,通过将序列分解块嵌入为内部算子,可以逐步聚合中间预测的长期趋势部分。此外,设计了一种高效的自相关机制,在序列级别进行依赖关系发现和信息聚合,这与之前的自注意机制形成了鲜明的对比。
2025-03-01 16:14:24
981
1
原创 SageFormer: Series-Aware Framework for Long-Term Multivariate Time Series Forecasting论文笔记
SageFormer通过结合图神经网络和Transformer架构,提出了一种新颖的系列感知框架,能够有效捕捉多变量时间序列中的序列内和序列间依赖关系。实验结果表明,SageFormer在多个数据集上均显著优于现有的最先进模型,尤其是在处理大规模数据集时表现出色。未来的研究可以进一步优化模型的计算效率、增强图结构的可解释性,并提升模型在处理极端事件和跨领域数据时的泛化能力。
2025-02-24 15:37:18
815
1
原创 Are Transformers Effective for Time Series Forecasting
本文工作质疑了新兴的基于Transformer的解决方案对长期时间序列预测问题的有效性。使用一个简单线性模型LTSF-Linear作为DMS预测基线来验证想法。
2024-12-09 14:30:05
1874
原创 Loss Shaping Constraints for Long-Term Time Series Forecasting论文笔记
随着预测窗口的长度增加,由于平均MSE和Window STD随预测长度的增加而增加,相对效应不变意味着绝对变化随预测长度的增加而增加。这是意料之中的,因为单调增加的约束不一定会强制减少整个窗口的方差。匹配性:这些数据集均属于典型的时间序列预测任务,且需要多步预测,符合论文提出方法的应用场景(长序列预测)。第二种是由于固有的泛化差距,在训练过程中存在可行约束,但在测试数据中没有有效的损失整形,如第二行。通过调整不同的预测窗口(如96、192、336、720步),考察各方法在不同预测长度下的表现。
2024-12-02 19:40:50
730
1
原创 Pre-training Enhanced Spatial-temporal Graph Neural Network for Multivariate Time Series Forecasting
提出了一种新的STEP框架,用于多变量时间序列预测,以解决STGNN无法学习长期信息的问题。下游STGNN通过可扩展时间序列预训练模型TSFormer增强。TSFormer能够有效地从非常长期的历史时间序列中学习时间模式并生成段级表示,为STGNN的短期输入提供丰富的上下文信息,并促进时间序列之间的依赖关系建模。在三个真实数据集上的大量实验表明STEP框架和所提出的TSFormer的优越性。
2024-11-23 14:35:23
844
原创 TimeXer:通过外部变量增强Transformer在时间序列预测中的能力
论文介绍了一种新型框架TimeXer,它利用Transformer结构处理时间序列预测时的外部变量,通过创新的嵌入层和注意力机制提升预测精度。实验证明TimeXer在多项任务中表现出色,特别是在结合内外部信息方面。
2024-11-08 18:06:47
1824
原创 ITRANSFORMER: 用于时间序列预测的倒置Transformer
iTransformer将每个独立的时间序列视为独立的token,在变量维度上应用自注意力机制来捕捉多变量之间的相关性。通过分离时间和变量维度,有助于获得更精确的多变量关联表示,同时利用层归一化和前馈网络学习到更优的序列全局表示。这一改进使得模型在处理多变量时间序列时更加高效和精准。
2024-11-02 17:37:36
1625
原创 TIMER-XL: 基于长上下文的Transformer统一时序预测模型
Time-XL提出了统一的Transformer时序预测模型,能同时处理单变量和多变量时序预测,并将时序预测的上下文长度首次扩充到千级别。
2024-10-28 18:01:11
2075
3
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅