目录
1.使用pip安装numpy库和jupyter notebook库
前言
python的学习进入下一个阶段了:Numpy&Pandas
Numpy(Numerical Python) 是科学计算基础库,提供大量科学计算相关功能,比如数据统计,随机数生成等。其提供最核心类型为多维数组类型(ndarray),支持大量的维度数组与矩阵运算, Numpy支持向量处理ndarray对象,提高程序运算速度。
一、numpy库的安装和测试
1.使用pip安装numpy库和jupyter notebook库
按 win+r 打开命令提示符,输入cmd,按回车进入,输入下面代码进行安装。
jupyter notebook库的安装比较慢,请耐心等待。
pip install numpy
pip install jupyter notebook
安装不了或者pip未换源的,可以看:python-快速上手爬虫-CSDN博客
2.arange函数测试环境安装
安装好以后,打开pycharm。输入以下代码进行测试,若能成功输出0-9的数组,即为成功。
import numpy as np
if __name__ == '__main__':
# 创建0,9的一维数组
print(np.arange(10))
3.使用终端打开jupyter notebook
在pycharm的最下面有一个终端,未汉化的叫Terminal。在这里输入jupyter notebook,运行完之后会在浏览器界面打开jupyter。能打开即为成功。

界面如图,找到自己保存代码的文件夹。

在这里进行新建文件,新建之后左上角的File里的Rename可以改名。

二、numpy里各种创建数组的方法
一般都用np代指numpy库,提高代码书写速度和可读性
- 代码不会自动补全,按tab会有提示
- 按 shift+enter 会运行本行代码
import numpy as np
1.arange
一般用来创建一维数组,四个参数分别是:起始,结尾,步长和元素类型。默认是整数类型。
np.arange(start, stop, step, dtype)
实例:jupyter会自动打印本行最后一行代码,array即是数组类型。
2.array
array可以创建多维数组,可以嵌套arange使用
object:数组或嵌套的数列,dtype:元素数据类型,可选,copy:对象是否需要复制,可选 ,
order:创建数组的样式,C为行方向,F为列方向,A为任意方向(默认)
subok:默认返回一个与基类类型一致的数组
ndmin:指定生成数组的最小维度
np.array(object, dtype = None, copy =True, order = None, subok = False, ndmin = 0)
实例:
- 创建一个二维数组:

- 创建一个三维数组,并打印各维度的数值:有几个[]就是几维数组。

- 嵌套arange,创建一个二维数组:

- ndmin的用法:指定生成数组的最小维度。

- dtype的用法:使用float也行,不过np.float64更好控制精度。

3.随机数创建
- random生成随机数:

- randint指定范围生成随机整数:一个参数 [0,low),两个参数 [low,high)。

- randn正态分布:期望为0,方差为1。一个参数表示一个维度。

- normal生成指定的正态分布:loc表示期望,scale表示方差,size表示形状即维度

4.ndarary对象属性

实例:

5.zeros和ones创建
顾名思义就是创建一个数组,用0或者1将其填充。
# zeros创建
np.zeros(shape, dtype = float, order ='C')
# ones创建
np.ones(shape, dtype = float, order ='C')
实例:
- zeros创建:创建空数组用0填充,或者zeros_like传入数组,用0填充。

- ones创建:创建空数组用0填充,或者ones_like传入数组,用0填充。

6.empty创建
np.empty(shape, dtype = float, order ='C')
实例:y和o的值可能一样

7.full创建
np.full(shape,fill_value)
8.创建单位矩阵
单位矩阵:除了左上到右下的对角线是1, 其余全是0的矩阵
实例:用eye,identity进行创建。
注意!单位矩阵各维度的值必须一样。

9.linspace创建一维等差数列数组
np.linspace(start, stop, num=50,endpoint=True, retstep=False, dtype=None)
参数解释:
start, stop, num=50:默认样本数为50,endpoint=True:为True时数列包含stop的值,为False则不包含
retstep=False:为True时生成的数组会显示间距,为False时不显示, dtype=None:数组的数据类型
实例:

10.logspace创建一维等比数列数组
logspace函数用于创建一个一维数组,数组是一个等比数列构成的,格式如下:
np.logspace(start, stop, num=50,endpoint=True, base=10.0, dtype=None)
参数解释:
start, stop, num=50,endpoint=True, base=10.0, dtype=None
ase 为 对数log的底数 , 其余参数作用与linspace一致
实例:注意理解该等比数列的计算方法。首项并不是等比数列中的首项。

总结
本文介绍了numpy库的安装以及数组的各种创建方法。Numpy&Pandas里的函数很多,需要多多使用才能记得牢,用的熟练。
1万+

被折叠的 条评论
为什么被折叠?



