隐马尔可夫链

1 马尔可夫链

        马尔科夫链(Markov Chain)是一种数学模型,它描述了一系列可能事件的概率,其中每个事件的发生仅依赖于前一个事件的状态。这一特性称为“无记忆性”或“马尔可夫性质”。我将用一个简单的天气预测模型作为例子来解释马尔科夫链。

1.1 天气预测模型

        假设我们有一个非常简化的天气系统,它只包含两种状态:晴天(Sunny)和雨天(Rainy)。我们用马尔可夫链来预测明天的天气,依据只有今天的天气状况。这里的状态就是指天气的情况(即晴天或雨天)。

        我们需要定义的是状态转移概率,即今天天气状况下,明天天气变化的概率。转移概率可以用以下的矩阵表示:

        | 当前\明天 | 晴天(S) | 雨天(R) |
        | ------------- | -------------- | -------------- |
        | 晴天(S)|.      0.9       |      0.1       |
        | 雨天(R)  |       0.5       |      0.5       |

        这个转移概率矩阵可以这样理解:
        如果今天是晴天(S),那么明天继续是晴天的概率是90%(0.9),变为雨天的概率是10%(0.1)。
        如果今天是雨天(R),那么明天变成晴天的概率是50%(0.5),继续是雨天的概率也是50%(0.5)。

        这个模型就是一个简单的马尔可夫链示例。在这个模型中,我们假设天气的变化仅依赖于当前的天气状态,并不依赖于更早以前的天气情况。这就是所谓的 无记忆性 或 马尔可夫性质。

1.2 更复杂的天气预测模型

        这个马尔科夫链模型是一个关于天气状态的简单示例。在这个模型中,每天的天气可以是晴天(Sun)、多云(Cloudy)或雨天(Rain)。状态转移图显示了每种天气状态转换到另一种状态的概率。这些概率表示在给定今天的天气情况下,明天天气状况的可能性。

        让我们更详细地分析这个模型:

        1. 晴朗(Sun)状态开始的转移概率:

                - 有50%的概率明天仍然是晴朗。
                - 有20%的概率明天会变多云。
                - 有30%的概率明天会下雨。

        2. 多云(Cloudy)状态开始的转移概率:

                - 有20%的概率明天会变晴朗。
                - 有10%的概率明天会下雨。
                - 根据马尔科夫链的性质,多云状态变为其他两个状态的总概率是30%(0.2+0.1),这意味着保持多云状态的概率是70%(1-0.3)。

        3. 雨天(Rain)状态开始的转移概率:

                - 有60%的概率明天会变晴朗。
                - 有30%的概率明天会变多云。
                - 有10%的概率明天继续下雨。

        基于上述信息,我们可以写出这个马尔科夫链的转移矩阵。转移矩阵通常是方形的,行和列分别代表当前状态和下一个状态,矩阵中的每个元素表示相应的转移概率。

                对于我们的天气模型,转移矩阵如下:

| 当前\明天  | 晴朗(S) | 多云(C) | 雨天(R) |
| -------------- | ------------- | --------------- | -------------- |
| 晴朗(S) |      0.5       |        0.2       |      0.3       |
| 多云(C) |      0.2       |        0.7       |      0.1       |
| 雨天(R) |      0.6       |        0.3       |      0.1       |

        在这个矩阵中,行代表当前的天气状态,列代表明天可能的天气状态。每个单元格中的数字代表从行状态转移到列状态的概率。例如,矩阵中的第一行表示如果今天是晴天,那么明天有50%的概率还是晴天,20%的概率变为多云,30%的概率下雨。

        无记忆性:马尔科夫链的一个关键特性是“无记忆性”,即明天的天气只依赖于今天的天气状态,而与过去的天气状态无关。

        转移矩阵的每一行之和必须为1:因为概率必须覆盖所有可能的未来状态,所以每一行的概率加起来必须等于100%。

        时间齐次性:在这个模型中,转移概率不随时间变化,即它们是恒定的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

思诺学长-刘竞泽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值