第1关:顺序表的实现之查找功能
任务描述
本关任务:实现顺序表中数据的查找功能。
相关知识
为了完成本关任务,你需要掌握:1. 线性表,2. 顺序表。
线性表
线性表是最基本、最简单、也是最常用的一种数据结构。线性表结构中,数据元素之间通过一对一首尾相接的方式连接起来。具体实现时,线性表可以采用不同的存储策略。下面给出了一种基于顺序存储的线性表(即:顺序表)实现方案:
该方案将线性表存储在一片连续空间里,并通过elem
和length
两个属性元素,组织成为一个结构体:
elem
: 给出线性表存储空间的起始地址length
: 当前线性表里的数据元素个数
为了讨论简化,我们假设每个数据元素是一个整数:
typedef int ElemType; // 数据元素的类型
顺序表
顺序表的类型定义如下:
#define MAXSIZE 100 //最大长度
typedef struct {
ElemType *elem; //指向数据元素的起始地址
int length; //线性表的当前长度
}SqList;
若定义:SqList L
,则通过L
就可对顺序表进行操作。
对数据元素进行操作处理是一个数据结构的重要组成部分。顺序表涉及的主要操作如下:
-
顺序表的初始化:构造一个最多可存储
MAXSIZE
个数据元素的顺序表,并将其初始状态设置为length=0
,即为空表。该操作函数具体定义如下:void SL_Initiate(SqList &L)
-
释放顺序表:释放
L.elem
所指向的用于存储数据元素的存储空间。该操作函数具体定义如下:void SL_Free(SqList &L)
-
判断顺序表是否为空:若为空表,则返回
true
,否则返回false
。该操作函数具体定义如下:bool SL_IsEmpty(SqList L)
-
判断顺序表是否已满:若顺序表达到最大长度,则返回
true
,否则返回false
。该操作函数具体定义如下:bool SL_IsFull(SqList L)
-
创建顺序表:输入
n
个数据元素,创建一个顺序表。该操作函数具体定义如下:void SL_Create(SqList &L,int n)
-
输出顺序表: 输出整个顺序表。该操作函数具体定义如下:
void SL_Print(SqList L)
-
获取顺序表的第
i
个数据元素:获取顺序表的第i
个数据元素L.elem[i-1]
赋给e
,i
的有效范围[1,L.length]
。该操作函数具体定义如下:void SL_GetAt(SqList L, int i, ElemType &e)
-
查找顺序表中第一个值为
x
的数据元素的位置: 在顺序表中查找第一个值为x
的元素,找到则返回该元素在表中的位置,否则返回0
。该操作函数具体定义如下:int SL_FindValue(SqList L, ElemType x)
编程要求
在右侧编辑器中补充代码,完成SL_GetAt
和SL_FindValue
两个操作函数,以实现顺序表中数据的查找功能。具体要求如下:
SL_GetAt
: 获取顺序表的第i
个数据元素L.elem[i-1]
,i
的有效范围[1,L.length]
SL_FindValue
: 在顺序表中查找第一个值为x
的元素,找到则返回该元素在表中的位置,否则返回0
。
注意:在实现两个操作函数的函数体内可调用其他操作。
测试说明
可在右侧文件夹中查看step1/Main.cpp
文件,以便与你的操作。
平台会对你编写的代码进行测试:
测试输入: 5
//输入数据元素的个数
8 9 12 33 45
//输入5个数据元素,创建顺序表
2
//获取第2个数据元素
33
//查找值为33的数据元素
预期输出: 9
//输出第2个数据元素的值
4
//输出值为33的数据元素在表中的位置
开始你的任务吧,祝你成功!
/*************************************************************
顺序表的实现之查找功能 实现文件
**************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include "Seqlist.h"
void SL_Initiate(SqList &L)
// 顺序表的初始化,即构造一个空的顺序表
{
L.elem = (ElemType*)malloc(sizeof(ElemType)*MAXSIZE);
L.length=0;
}
void SL_Free(SqList &L)
// 释放顺序表
{
free(L.elem);
}
bool SL_IsEmpty(SqList L)
// 判断顺序表是否空
{
return L.length==0;
}
bool SL_IsFull(SqList L)
// 判断顺序表是否满
{
return L.length==MAXSIZE;
}
void SL_Create(SqList &L,int n)
// 输入n个数据元素,创建一个顺序表L
{
int i;
L.length=n;
for(i=0; i<n; i++)
scanf("%d", &L.elem[i]);
}
void SL_Print(SqList L)
// 输出整个顺序表
{
if (L.length==0)
{
printf("The slist is empty.\n");
return;
}
for (int i=0; i<L.length; i++)
printf("%d ", L.elem[i]);
printf("\n");
}
void SL_GetAt(SqList L, int i, ElemType &e)
// 获取顺序表L的第i个元素赋给e,i的有效范围[1,L.length]。
{
// 请在这里补充代码,完成本关任务
/********** Begin *********/
e = L.elem[i-1];
/********** End **********/
}
int SL_FindValue(SqList L, ElemType x)
// 在顺序表L中查找第一个值为x的元素,找到则返回该元素在表中的位置,否则返回0。
{
// 请在这里补充代码,完成本关任务
/********** Begin *********/
int i=0;
for(i=0;i<L.length;i++){
if (L.elem[i]==x)
return i+1;
}
return 0;
/********** End **********/
}
第2关:顺序表的实现之增删功能
任务描述
本关任务:实现顺序表中数据的插入和删除功能。
相关知识
为了完成本关任务,你需要掌握:1. 顺序表的类型定义,2.顺序表涉及的主要操作。
顺序表的类型定义
定义如下:
#define MAXSIZE 100 //最大长度
typedef int ElemType; // 数据元素的类型
typedef struct {
ElemType *elem; //指向数据元素的起始地址
int length; //线性表的当前长度
}SqList;
顺序表涉及的主要操作
主要操作如下:
-
顺序表的初始化
void SL_Initiate(SqList &L)
-
释放顺序表
void SL_Free(SqList &L)
-
判断顺序表是否为空
bool SL_IsEmpty(SqList L)
-
判断顺序表是否已满
bool SL_IsFull(SqList L)
-
创建顺序表
void SL_Create(SqList &L,int n)
-
输出顺序表
void SL_Print(SqList L)
-
获取顺序表的第
i
个数据元素void SL_GetAt(SqList L, int i, ElemType &e)
-
查找顺序表中第一个值为
x
的数据元素的位置int SL_FindValue(SqList L, ElemType x)
-
在顺序表第
i
个位置插入数据元素e
: 将e
插入L.elem[i-1]
之前。参数i
范围应在[1,L.length+1]
内,否则会产生不能预料的异常或错误。该操作函数具体定义如下:void SL_InsAt(SqList &L, int i, ElemType e)
-
删除顺序表的第
i
个数据元素: 删除顺序表的第i
个数据元素。参数i
范围应在[1,L.length]
内,否则会产生不能预料的异常或错误。该操作函数具体定义如下:void SL_DelAt(SqList &L, int i)
-
删除顺序表中第一个值为
x
的数据元素: 删除第一个值为x
的数据元素。该操作函数具体定义如下:void SL_DelValue(SqList &L, ElemType x)
编程要求
在右侧编辑器中补充代码,完成SL_InsAt
、SL_DelAt
和SL_DelValue
三个操作函数,以实现顺序表中数据的插入和删除功能。具体要求如下:
SL_InsAT
: 在顺序表的第i
个位置插入新元素e
, 即在元素L.elem[i-1]
之前插入,i
的有效范围[1,L.length+1]
,插入之前要判断表满。SL_DelAt
:删除顺序表的第i
个元素,i
的有效范围[1,L.length]
。SL_DelValue
:删除顺序表中第一个值为x
的元素。
测试说明
平台会对你编写的代码进行测试,测试文件为step2/Main.cpp
,可在右侧文件夹中进行查看:
测试输入: 5
//输入数据元素的个数
8 9 12 33 45
//输入5个数据元素,创建顺序表
4 10
//输入待插入的位置和待插入元素的值,表示在第4个位置插入元素10
2
//删除第2个数据元素
33
//删除值为33的数据元素
预期输出: 8 12 10 45
//输出当前表中的数据元素
开始你的任务吧,祝你成功!
/*************************************************************
顺序表的实现之增删功能 实现文件
**************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include "Seqlist.h"
void SL_Initiate(SqList &L)
// 顺序表的初始化,即构造一个空的顺序表
{
L.elem = (ElemType*)malloc(sizeof(ElemType)*MAXSIZE);
L.length=0;
}
void SL_Free(SqList &L)
// 释放顺序表
{
free(L.elem);
}
bool SL_IsEmpty(SqList L)
// 判断顺序表是否空
{
return L.length==0;
}
bool SL_IsFull(SqList L)
// 判断顺序表是否满
{
return L.length==MAXSIZE;
}
void SL_Create(SqList &L,int n)
// 输入n个数据元素,创建一个顺序表L
{
int i;
L.length=n;
for(i=0; i<n; i++)
scanf("%d", &L.elem[i]);
}
void SL_Print(SqList L)
// 输出整个顺序表
{
if (L.length==0)
{
printf("The slist is empty.\n");
return;
}
for (int i=0; i<L.length; i++)
printf("%d ", L.elem[i]);
printf("\n");
}
void SL_InsAt(SqList &L, int i, ElemType e)
// 在顺序表的第i个位置插入新元素e, 即在元素L.elem[i-1]之前插入
// i的有效范围[1,L.length+1]
{
// 请在这里补充代码,完成本关任务
/********** Begin *********/
int j;
for(j=L.length;j>=i;--j)
{
L.elem[j+1] = L.elem[j];
}
L.elem[j+1] = e;
L.length++;
/********** End **********/
}
void SL_DelAt(SqList &L, int i)
// 删除顺序表L的第i个元素
//i的有效范围[1,L.length]
{
// 请在这里补充代码,完成本关任务
/********** Begin *********/
int j;
for (j=i-1;j<=L.length;++j)
{
L.elem[j] = L.elem[j+1];
}
L.length--;
/********** End **********/
}
void SL_DelValue(SqList &L, ElemType x)
// 删除第一个值为x的元素
{
// 请在这里补充代码,完成本关任务
/********** Begin *********/
int i=0;
while(L.elem[i]!=x&&i<L.length)
i++;
if(L.elem[i]==x)
{
for (i;i<L.length;i++)
L.elem[i] = L.elem[i+1];
L.length--;
}
/********** End **********/
}
第3关:顺序表的合并
任务描述
本关任务:已知两个顺序表A和B,数据元素按值非递减有序排列,现将A和B归并成一个新的顺序表C,使C中的数据元素仍按值非递减有序排列。 例如: 设 A=(3,5,8,11) B=(2,6,9,15,20) 则 C=(2,3,5,6,8,9,11,15,20)
相关知识
为了完成本关任务,你需要掌握:1. 顺序表的类型定义,2.顺序表涉及的主要操作。
顺序表的类型定义
定义如下:
#define MAXSIZE 100 //最大长度
typedef int ElemType; // 数据元素的类型
typedef struct {
ElemType *elem; //指向数据元素的起始地址
int length; //线性表的当前长度
}SqList;
顺序表涉及的主要操作
主要操作如下:
-
顺序表的初始化:构造一个最多可存储
MAXSIZE
个数据元素的顺序表,并将其初始状态设置为length=0
,即为空表。该操作函数具体定义如下:void SL_Initiate(SqList &L)
-
释放顺序表:释放
L.elem
所指向的用于存储数据元素的存储空间。该操作函数具体定义如下:void SL_Free(SqList &L)
-
判断顺序表是否为空:若为空表,则返回
true
,否则返回false
。该操作函数具体定义如下:bool SL_IsEmpty(SqList L)
-
判断顺序表是否已满:若顺序表达到最大长度,则返回
true
,否则返回false
。该操作函数具体定义如下:bool SL_IsFull(SqList L)
-
创建顺序表:输入
n
个数据元素,创建一个顺序表。该操作函数具体定义如下:void SL_Create(SqList &L,int n)
-
输出顺序表: 输出整个顺序表。该操作函数具体定义如下:
void SL_Print(SqList L)
-
顺序表的合并: 已知顺序表
LA
和LB
的元素按值非递减排列,归并LA
和LB
得到新的顺序表LC
,LC
的元素也按值非递减排列。该操作函数具体定义如下:
编程要求
根据提示,在右侧编辑器中补充代码,完成MergeList_Sq
操作函数,以实现顺序表的合并。具体要求如下:
MergeList_Sq
: 已知顺序表LA
和LB
的元素按值非递减排列,归并LA
和LB
得到新的顺序表LC
,LC
的元素也按值非递减排列。
提示:已知顺序表 A
和 B
中的数据元素按值非递减有序排列,现要求将 A
和 B
归并为一个新的顺序表 C
,且 C
中的数据元素仍按值非递减有序排列。
例如:
A=(1,7,8)
B=(2,4,6,8,10,11)
则合并后的C=(1,2,4,6,7,8,8,10,11)
测试说明
平台会对你编写的代码进行评测,测试文件为step2/Main.cpp
,可在右侧文件夹中进行查看:
测试输入: 4
//输入A表的元素个数
3 5 8 11
//输入4个数据元素,创建A表
7
//输入B表的元素个数
2 6 8 9 11 15 20
//输入7个数据元素,创建B表
预期输出: 2 3 5 6 8 8 9 11 11 15 20
//输出合并后的C表
开始你的任务吧,祝你成功!
/*************************************************************
顺序表的合并 实现文件
**************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include "Seqlist.h"
void SL_Initiate(SqList &L)
// 顺序表的初始化,即构造一个空的顺序表
{
L.elem = (ElemType*)malloc(sizeof(ElemType)*MAXSIZE);
L.length=0;
}
void SL_Free(SqList &L)
// 释放顺序表
{
free(L.elem);
}
bool SL_IsEmpty(SqList L)
// 判断顺序表是否空
{
return L.length==0;
}
bool SL_IsFull(SqList L)
// 判断顺序表是否满
{
return L.length==MAXSIZE;
}
void SL_Create(SqList &L,int n)
// 输入n个数据元素,创建一个顺序表L
{
int i;
L.length=n;
for(i=0; i<n; i++)
scanf("%d", &L.elem[i]);
}
void SL_Print(SqList L)
// 输出整个顺序表
{
if (L.length==0)
{
printf("The slist is empty.\n");
return;
}
for (int i=0; i<L.length; i++)
printf("%d ", L.elem[i]);
printf("\n");
}
void MergeList_Sq(SqList LA,SqList LB,SqList &LC)
//已知顺序表LA和LB的元素按值非递减排列
//归并LA和LB得到新的顺序表LC,LC的元素也按值非递减排列。
{
// 请在这里补充代码,完成本关任务
/********** Begin *********/
LC.length = LA.length + LB.length;
int i=0 , j=0,t=0;
while(i<LA.length&&j<LB.length)
{
if(LA.elem[i]<=LB.elem[j])
LC.elem[t++] = LA.elem[i++];
else
LC.elem[t++] = LB.elem[j++];
}
if(i==LA.length)
{
while(t<LC.length)
LC.elem[t++] = LB.elem[j++];
}
else
{
while(t<LC.length)
LC.elem[t++] = LA.elem[i++];
}
/********** End **********/
}