Z 分数标准化

Z分数标准化(也称为标准化或Z得分归一化)是一种数据预处理技术,用于将不同尺度的特征转换为具有相似尺度的形式。它通过减去均值并除以标准差来实现。

具体步骤如下:

计算均值(μ)和标准差(σ):

对于给定的数据集,首先计算每个特征的均值(μ)和标准差(σ)。均值是所有数据点的平均值,而标准差衡量的是数据点与均值的偏差程度。
应用Z分数公式:

在这里插入图片描述

其中X是原始数据点的值,
μ是均值,
σ是标准差。
解释Z分数:

计算出的Z分数表示每个数据点相对于原始数据集的均值的偏差,以标准差为单位。如果一个数据点的Z分数为0,这意味着该点的值等于均值。如果Z分数为正,该点的值高于均值;如果为负,则低于均值。
数据的标准化:

经过Z分数标准化的数据集将具有均值接近0,标准差接近1。这使得不同特征之间更容易比较和组合,因为它们现在在相同的尺度上。
Z分数标准化在很多数据分析和机器学习任务中很有用,特别是当数据集中的特征有不同的尺度或单位时(例如,一个特征是身高(以厘米为单位),另一个特征是收入(以元为单位))。标准化后,这些特征就可以在相同的基础上进行比较和处理。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值