AI+医疗:医学影像分析与药物发现

 

AI+医疗:医学影像分析与药物发现

             ——从像素级诊断到原子级药物设计

引言:医疗AI的范式重构

2020年FDA批准的IDx-DR成为首个AI辅助诊断医疗设备,2023年AlphaFold2破解50年蛋白质折叠难题——AI正在重塑医疗行业的两大核心场景:医学影像分析与药物发现。本文将深度解析:

1. 医学影像分析中的多模态融合技术

2. 药物发现中的生成式AI突破

3. 联邦学习驱动的隐私保护方案

4. 从实验室到临床的转化路径

一、医学影像分析:从像素到病理的智能跃迁

1.1 影像分割技术演进

经典架构对比:

模型    核心创新    Dice系数 (LiTS数据集)
U-Net    编码器-解码器跳跃连接    0.92
nnUNet    自动架构搜索    0.94
Swin UNETR    Vision Transformer    0.96

3D分割实战代码(PyTorch):

class UNet3D(nn.Module):
    def __init__(self, in_channels=1, out_channels=2):
        super().__init__()
        self.encoder = DoubleConv(in_channels, 64)
        self.bottleneck = Bottleneck(64, 128)
        self.decoder = Decoder(128, 64, out_channels)

    def forward(self, x):
        enc1 = self.en

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值