【Hack The Box】windows练习-- Omni

本文详细介绍了在HackTheBox平台上解决Omni挑战的过程。通过信息收集、web枚举、iot攻击等多种手段,最终实现了SCredential破解及系统权限提升。文章记录了从初始访问到获取系统权限的每一步操作。

HTB 学习笔记

【Hack The Box】windows练习-- Omni


🔥系列专栏:Hack The Box
🎉欢迎关注🔎点赞👍收藏⭐️留言📝
📆首发时间:🌴2022年11月7日🌴
🍭作者水平很有限,如果发现错误,还望告知,感谢!

在这里插入图片描述

信息收集

135/tcp   open  msrpc    Microsoft Windows RPC
5985/tcp  open  upnp     Microsoft IIS httpd
8080/tcp  open  upnp     Microsoft IIS httpd
| http-auth: 
| HTTP/1.1 401 Unauthorized\x0D
|_  Basic realm=Windows Device Portal
|_http-server-header: Microsoft-HTTPAPI/2.0
|_http-title: Site doesn't have a title.
29817/tcp open  unknown
29819/tcp open  arcserve ARCserve Discovery
29820/tcp open  unknown
1 service unrecognized despite returning data. If you know the service/version, please submit the following fingerprint at https://nmap.org/cgi-bin/submit.cgi?new-service :
SF-Port29820-TCP:V=7.80%I=7%D=8/23%Time=5F42B5BD%P=x86_64-pc-linux-gnu%r(N
SF:ULL,10,"\*LY\xa5\xfb`\x04G\xa9
### 如何在 Windows 上安装 Mini-Omni 对于希望在 Windows 操作系统上安装并配置 Mini-Omni 的用户来说,可以遵循以下指导来进行操作。虽然官方文档主要集中在 Linux 和 macOS 平台上提供了详细的说明[^1],但在 Windows 上也可以实现这一过程。 #### 准备工作环境 确保计算机已安装 Python 3.x 版本以及 pip 工具。可以通过命令提示符输入 `python --version` 来验证 Python 安装情况;同样地,使用 `pip --version` 验证 pip 是否可用。如果尚未安装这两个工具,则需先完成它们的安装。 #### 创建虚拟环境(可选) 建议创建一个新的虚拟环境来管理项目依赖项。这有助于保持系统的整洁,并减少不同项目的库之间可能发生的冲突。 ```bash python -m venv mini_omni_env ``` 激活新创建的虚拟环境: - 对于 PowerShell 用户: ```powershell .\mini_omni_env\Scripts\Activate.ps1 ``` - 或者对于 CMD 用户: ```cmd mini_omni_env\Scripts\activate.bat ``` #### 安装必要的软件包 进入虚拟环境中后,下一步就是安装运行 Mini-Omni 所必需的所有 Python 库和其他依赖关系。通常情况下,这些信息会记录在一个名为 requirements.txt 文件里。如果没有现成的要求文件,可以从 Hugging Face 页面下载最新的 setup 脚本或直接按照页面上的指示执行相应的 pip 命令进行安装。 #### 下载预训练模型权重 访问 [Hugging Face](https://huggingface.co/gpt-omni/mini-omni),找到对应的 Mini-Omni 模型版本链接,点击进入详情页之后可以看到右侧有多个可供选择的不同大小的模型变体。根据实际需求挑选合适的选项并保存到本地磁盘中作为后续加载的基础。 #### 编写简单的测试脚本 最后一步是编写一段简短的 Python 测试程序以确认整个设置流程是否成功。下面给出了一段用于调用 Mini-Omni 进行图像描述的例子代码片段: ```python from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer model_name = 'path_to_your_downloaded_model' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) generator = pipeline('text-generation', model=model, tokenizer=tokenizer) result = generator("these descriptions are amazing! This is what I got from one line of command:", max_length=50)[0]['generated_text'] print(result) ``` 上述代码将会读取指定路径下的预训练模型参数,并尝试生成与给定文本相关的延续部分。当然,具体的应用场景可能会有所不同,因此还需要依据个人情况进行适当调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人间体佐菲

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值