RabbitMQ学习总结

MQ介绍

同步和异步通讯

微服务间通讯有同步和异步两种方式:

  • 同步通讯:就像打电话,需要实时响应

  • 异步通讯:就像发微信,不需要马上回复

两种方式各有优劣,打电话可以立即得到响应,但是你却不能跟多个人同时通话。发送消息可以同时与多个人沟通,但是往往响应会有延迟

同步调用的问题

微服务间基于Feign的调用就属于同步方式,它存在一些问题:

  • 耦合度高:每次加入新的需求,都要修改原来的代码

  • 性能下降:调用者需要等待服务提供者响应,如果调用链过长则响应时间等于每次调用的时间之和

  • 资源浪费:调用链中的每个服务在等待响应过程中,不能释放请求占用的资源,高并发场景下会极度浪费系统资源

  • 级联失败:如果服务提供者出现问题,所有调用方都会跟着出问题,如同多米诺骨牌一样,迅速导致整个微服务群故障

异步调用方案

异步调用通过事件驱动模式(Broker)来解决上面同步调用问题

  • 耦合度低:每个服务都可以灵活插拔,可替换

  • 性能提升:无需等待订阅者处理完成,响应更快速

  • 故障隔离:服务没有直接调用,不存在级联失败问题

 

 


什么是MQ

MQ (Message Queue),中文是消息队列,字面来看就是存放消息的队列。

它是分布式系统中重要的组件,主要解决应用解耦,流量削峰,异步消息等问题。

常见的角色有:Producer(生产者)、Consumer(消费者)、Broker(中介)。

应用解耦  

场景说明:用户注册后,需要发注册邮件和注册短信。

流量削峰  

应用场景:秒杀活动,一般会因为流量过大,导致流量暴增,应用挂掉。为解决这个问题,一般需要在应用前端加入消息队列。

有了消息队列可以将大量请求缓存起来,分散到很长一段时间处理,这样可以大大提到系统的稳定性和用户体验 。

 异步消息

通过消息队列可以让数据在多个系统之间进行流通。

数据的产生方不需要关心谁来使用数据,也不需要使用方等待处理的结果,只需要将数据发送到消息队列,数据使用方直接在消息队列中直接获取数据即可

常见的消息队列

RabbitMQActiveMQRocketMQKafka
公司/社区RabbitApache阿里Apache
开发语言ErlangJavaJavaScala&Java
协议支持AMQP,XMPP,SMTP,STOMPOpenWire,AMQP,STOMP,MQTT自定义协议自定义协议
可用性一般
单机吞吐量一般非常高
消息延迟微秒级毫秒级毫秒级毫秒以内
消息可靠性一般一般

RabbitMQ

介绍

RabbitMQ是基于AMQP(Advanced Message Queuing Protocol)的一款消息中间件管理系统

官网地址:Messaging that just works — RabbitMQ

官方教程:RabbitMQ Tutorials — RabbitMQ

安装

在Centos7虚拟机中使用Docker来安装

# 1. 下载rabbitmq镜像
[root@itcast ~]# docker pull rabbitmq:3.8-management

# 2. 运行容器 
[root@itcast ~]# docker run -d  -p 15672:15672  -p 5672:5672  --name mq  -v mq-plugins:/plugins --hostname mq  rabbitmq:3.8-management

创建空间

要想使用RabbitMQ,必须创建出空间【类似于数据库服务器中的一个库一样】和用户

RabbitMQ提供了一个管理界面来完成这些工作,访问地址是http://192.168.136.131:15672,默认的账号和密码都是guest

创建空间

==空间的名字是 itheima==

 

创建用户

 ==账号和密码都是root==

 

 

将空间交给用户管理

==将刚创建好的itheima空间交给root用户进行管理==

消息模式

 消息队列的消息分为二类传输模型:点对点模型发布 /订阅模型

 

RabbitMQ在此基础上进行细化,提供了6种消息模型,但是第6种其实是RPC,并不是MQ,因此不予学习。那么也就剩下5种

  • 1、2(点对点模型)

  • 3、4、5(发布/订阅模型)

  •  

 


SpringAMQP【重点】

介绍

AMQP:是用于在应用程序之间传递业务消息的开放标准。该协议与语言和平台无关,更符合微服务中独立性的要求。

Spring AMQP:基于AMQP协议定义的一套API,提供了模板来发送和接收消息,模板底层是基于RabbitMQ封装。

SpringAmqp的官方地址:Spring AMQP


Basic Queue

 

生产者

① 在application.yml中添加MQ配置

spring:
  rabbitmq:
    host: 192.168.136.131 # 主机名
    port: 5672 # 端口
    virtual-host: itheima # 虚拟主机
    username: root # 用户名
    password: root # 密码 

 ② 编写测试类SpringAmqpTest,并利用RabbitTemplate实现消息发送

package com.itheima.test;

import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;

@SpringBootTest
@RunWith(SpringJUnit4ClassRunner.class)
public class SpringAmqpTest {

    @Autowired
    private RabbitTemplate rabbitTemplate;

    //发送简单消息
    @Test
    public void testSimpleQueue() {
        //参数一: 队列名称(次队列需要是提前创建好的)   参数二: 消息内容
        rabbitTemplate.convertAndSend("p2p", "hello,spring amqp!");
    }
}

消费者

 ① 在application.yml中添加MQ配置

spring:
  rabbitmq:
    host: 192.168.136.131 # 主机名
    port: 5672 # 端口
    virtual-host: itheima # 虚拟主机
    username: root # 用户名
    password: root # 密码 

 ② 创建com.itheima.listener.SpringRabbitListener

package com.itheima.listener;

import org.springframework.amqp.rabbit.annotation.RabbitListener;
import org.springframework.stereotype.Component;


@Component
public class SpringRabbitListener {
    //简单类型消息
    @RabbitListener(queues = "p2p")//声明队列名称
    public void listenSimpleQueueMessage(String msg) {
        System.out.println("消费者接收到消息:【" + msg + "】");
    }
}

测试

启动consumer服务,然后在publisher服务中运行测试代码,发送MQ消息


 

Work Queue

当消息处理比较耗时的时候,可能生产消息的速度会远远大于消息的消费速度。长此以往,消息就会堆积越来越多,无法及时处理。

此时就可以使用work 模型,多个消费者共同处理消息处理,速度就能大大提高了。

 

生产者

这次我们循环发送,模拟大量消息堆积现象。

在publisher服务中的SpringAmqpTest类中添加一个测试方法:

    //批量发送消息
    @Test
    public void testWorkQueue() {
        for (int i = 1; i <= 50; i++) {
            rabbitTemplate.convertAndSend("p2p", "message_" + i);
        }
    }

消费者

要模拟多个消费者绑定同一个队列,我们在consumer服务的SpringRabbitListener中添加2个新的方法:

    //    //简单类型消息
    //    @RabbitListener(queues = "p2p")//声明队列名称
    //    public void listenSimpleQueueMessage(String msg) {
    //        System.out.println("消费者接收到消息:【" + msg + "】");
    //    }

    //使用下面两个方法来接收p2p队列中的消息
    @RabbitListener(queues = "p2p")
    public void listenWorkQueue1(String msg) throws InterruptedException {
        System.out.println("消费者1接收到消息:【" + msg + "】");
        Thread.sleep(20);
    }

    @RabbitListener(queues = "p2p")
    public void listenWorkQueue2(String msg) throws InterruptedException {
        System.err.println("消费者2........接收到消息:【" + msg + "】");
        Thread.sleep(200);
    }

测试

先启动ConsumerApplication后(消费者),再执行publisher服务中刚刚编写的发送测试方法testWorkQueue(提供者)。

可以看到消费者1很快完成了自己的25条消息。消费者2却在缓慢的处理自己的25条消息。

也就是说消息是平均分配给每个消费者,并没有考虑到消费者的处理能力。这样显然是有问题的。

 

能者多劳

在spring中有一个简单的配置,可以解决这个问题。我们修改consumer服务的application.yml文件,添加配置:

spring:
  rabbitmq:
    listener:
      simple:
        prefetch: 1 # 消费者一次处理一条消息,处理完毕后再从MQ中获取

 

 

小结

Work模型的使用:

  • 多个消费者绑定到一个队列,同一条消息只会被一个消费者处理

  • 通过设置prefetch来控制消费者预取的消息数量


Fanout Exchange

Fanout,在MQ中可以理解为广播模式。

 

声明队列和交换机

 我们习惯在消费者一方来创建交换机和队列

@Configuration
public class FanoutConfiguration {
    // 声明交换机
    @Bean
    public FanoutExchange fanoutExchange() {
        return new FanoutExchange("fanout.exchange");
    }

    // 声明第1个队列
    @Bean
    public Queue fanoutQueue1() {
        return new Queue("fanout.queue1");
    }

    // 队列1绑定交换机
    @Bean
    public Binding bindingQueue1(FanoutExchange fanoutExchange, Queue fanoutQueue1) {
        return BindingBuilder.bind(fanoutQueue1).to(fanoutExchange);
    }

    // 声明第2个队列
    @Bean
    public Queue fanoutQueue2() {
        return new Queue("fanout.queue2");
    }

    // 队列2绑定交换机
    @Bean
    public Binding bindingQueue2(FanoutExchange fanoutExchange, Queue fanoutQueue2) {
        return BindingBuilder.bind(fanoutQueue2).to(fanoutExchange);
    }
}

消费者

    //使用下面两个方法来测试Fanout类型的消息
    @RabbitListener(queues = "fanout.queue1")
    public void listenFanoutQueue1(String msg) {
        System.out.println("消费者1接收到Fanout消息:【" + msg + "】");
    }

    @RabbitListener(queues = "fanout.queue2")
    public void listenFanoutQueue2(String msg) {
        System.out.println("消费者2接收到Fanout消息:【" + msg + "】");
    }

生产者

    // 发送fanout消息
    @Test
    public void testFanoutExchange() throws Exception {
        //参数一: 交换机名称  参数二:暂时没用    参数三: 消息内容
        rabbitTemplate.convertAndSend("fanout.exchange", "", "hello,everyone!");
    }

测试

启动consumer服务,然后在publisher服务中运行测试代码,发送MQ消息

小结

交换机的作用是什么?

  • 接收publisher发送的消息

  • FanoutExchange的会将消息路由到每个绑定的队列

  • 不能缓存消息,路由失败,消息丢失

声明队列、交换机、绑定关系的Bean是什么?

  • Queue

  • FanoutExchange

  • Binding


 

Direct Exchange

在Fanout模式中,一条消息,会被所有订阅的队列都消费。但是,在某些场景下,我们希望不同的消息被不同的队列消费。

这时就要用到Direct类型的Exchange

注解声明队列和交换机(消费者)

基于@Bean的方式声明队列和交换机比较麻烦,Spring还提供了基于注解方式来声明。

在consumer的SpringRabbitListener中添加两个消费者,同时基于注解来声明队列和交换机:

 

    //使用下面两个方法来测试Direct类型的消息
    // direct监听器1
    @RabbitListener(bindings =@QueueBinding(  // 完成队列绑定交换机
            value = @Queue("direct.queue1"), // 创建队列
            exchange = @Exchange(value = "direct.exchange",type = ExchangeTypes.DIRECT), // 创建交换机并绑定队列
            key ={"vip","base"} // 指定routing key
    ))
    public void listenDirectQueue1(String msg){
        System.out.println("direct消费者1接收消息:【" + msg + "】");
    }

    // direct监听器2
    @RabbitListener(bindings =@QueueBinding(
            value = @Queue("direct.queue2"),
            exchange = @Exchange(value = "direct.exchange",type = ExchangeTypes.DIRECT),
            key ={"base"}
    ))
    public void listenDirectQueue2(String msg){
        System.err.println("direct消费者2接收消息:【" + msg + "】");
    }

生产者

    // 发送direct消息
    @Test
    public void testSendDirect() throws Exception {
        //参数一: 交换机名称  参数二:routingKey 参数三: 消息内容
        rabbitTemplate.convertAndSend("direct.exchange", "vip", "hello,everyone!");
    }

测试

启动consumer服务,然后在publisher服务中运行测试代码,发送MQ消息

小结

描述下Direct交换机与Fanout交换机的差异?

  • Fanout交换机将消息路由给每一个与之绑定的队列

  • Direct交换机根据RoutingKey判断路由给哪个队列

  • 如果多个队列具有相同的RoutingKey,则与Fanout功能类似

基于@RabbitListener注解声明队列和交换机有哪些常见注解?

  • @QueueBinding

  • @Queue

  • @Exchange


Topic Exchange

Topic类型的类型Exchange与Direct相比,可以让队列在绑定Routing key 的时候使用通配符!

Routingkey 一般都是有一个或多个单词组成,多个单词之间以”.”分割,例如: china.news

通配符规则:

#:代指0个或多个单词

*:代指一个单词

 

注解声明队列和交换机(消费者)

	//使用下面两个方法来测试Topic类型的消息
    @RabbitListener(bindings = @QueueBinding(
            value = @Queue("topic.queue1"),
            exchange = @Exchange(value = "topic.exchange", type = ExchangeTypes.TOPIC),
            key = "china.#"
    ))
    public void listenTopicQueue1(String msg) {
        System.out.println("消费者1接收到Topic消息:【" + msg + "】");
    }

    @RabbitListener(bindings = @QueueBinding(
            value = @Queue("topic.queue2"),
            exchange = @Exchange(value = "topic.exchange", type = ExchangeTypes.TOPIC),
            key = "#.news"
    ))
    public void listenTopicQueue2(String msg) {
        System.out.println("消费者2接收到Topic消息:【" + msg + "】");
    }

生产者  

    // 发送topic消息
    @Test
    public void testTopicExchange() throws Exception {
        //参数一: 交换机名称  参数二:routingKey 参数三: 消息内容
        rabbitTemplate.convertAndSend("topic.exchange", "china.news", "喜报!孙悟空大战孙行者,胜!!!");
    }

测试

启动consumer服务,然后在publisher服务中运行测试代码,发送MQ消息

小结

描述下Direct交换机与Topic交换机的差异?

  • Topic交换机接收的消息RoutingKey必须是多个单词,以 xx.xx 分割

  • Topic交换机与队列绑定时的bindingKey可以指定通配符

  • #:代表0个或多个词

  • *:代表1个词


    配置JSON转换器

    我们发送到队列中的消息,都是用jdk序列化方式放到队列中,然后接收消息的时候,反序列化成JAVA对象。这样的方式在队列中的消息就是一串我们看不懂的序列化码。

所以我们需要配置 JSON转换器

显然,JDK序列化方式并不合适。我们希望消息体的体积更小、可读性更高,因此可以使用JSON方式来做序列化和反序列化。

1)在父工程中引入依赖:

<dependency>
 <groupId>com.fasterxml.jackson.core</groupId>
 <artifactId>jackson-databind</artifactId>
 <version>2.9.10</version>
</dependency>

 2)在publisher和consumer两个服务启动类中添加json转换器

@Bean
public MessageConverter jsonMessageConverter(){
	return new Jackson2JsonMessageConverter();
}

 

 这样,我们看到的消息就是JSON格式的消息了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值