使用R进行时间序列分析——SARIMA模型(一)

本文介绍如何使用R语言进行时间序列分析,重点是SARIMA模型的应用。通过理论基础、数据样例,详细展示了时序图分析、数据分解、趋势消除、平稳性检验和纯随机性检验的过程,指导读者理解和应用SARIMA模型进行时间序列建模。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        逐步教你学会时间序列SARIMA模型。      

        在时间序列分析之中一般都是对于平稳时间序列进行建模分析,然而现实生活当中很多数据变动产生的时间序列并非是平稳的,它会在每隔一段时间均出现重复、循环的跟随季节变化的现象,往往会使我们的研究复杂化。通常我们对于一般的平稳时间序列都会使用自回归移动平均模型建模。

        本博客以R语言为主要分析过程为主,代码有详细注释!

一.理论基础


      设\left \{ x_{t},t\epsilon T \right \}是时间序列,满足如下结构的模型为自回归移动平均模型(autoregressive moving average,ARMA)模型,简记为ARMA(p,q)

x_{t}= {\phi_{0}}+{\phi _{1}}x_{t-1}\cdots +{\phi _{p}}x_{t-p}+{\varepsilon _{t}}-{\theta _{1}}{\varepsilon _{t-1}}-{\theta _{2}}{\varepsilon _{t-2}}-\cdots -{\theta _{q}}{\varepsilon _{t-q}}

        其中{\varepsilon _{t}}为均值为0的白噪声序列,同时借助于延迟算子,ARMA(p,q)模型可以简记为:

\phi(B)x_{t}=\theta (B)\varepsilon_{t}

        在具体研究当中,为了将季节模型与非季节模型相结合,创建乘积季节模型。并将符合如下结构的季节周期为s的乘积季节ARMA(p,q)\times (P,Q)_{s}模型:

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值