逐步教你学会时间序列SARIMA模型。
在时间序列分析之中一般都是对于平稳时间序列进行建模分析,然而现实生活当中很多数据变动产生的时间序列并非是平稳的,它会在每隔一段时间均出现重复、循环的跟随季节变化的现象,往往会使我们的研究复杂化。通常我们对于一般的平稳时间序列都会使用自回归移动平均模型建模。
本博客以R语言为主要分析过程为主,代码有详细注释!
一.理论基础
设是时间序列,满足如下结构的模型为自回归移动平均模型(autoregressive moving average,ARMA)模型,简记为ARMA(p,q),
其中为均值为0的白噪声序列,同时借助于延迟算子,ARMA(p,q)模型可以简记为:
在具体研究当中,为了将季节模型与非季节模型相结合,创建乘积季节模型。并将符合如下结构的季节周期为s的乘积季节模型: