机器翻译实验报告

编码器

编码器是一种神经网络模型或组件,用于将输入的文本数据转换为一种低维的、连续的向量表示。这种向量表示能够捕捉文本中的关键信息,如语义、语法和上下文关系,从而方便后续任务的处理。编码器通常由多个神经网络层组成,其中最常见的是循环神经网络及其变体,如长短时记忆网络和门控循环单元。这些网络结构能够处理序列数据,并捕捉文本中的长距离依赖关系。

具体而言,编码器首先将输入的文本数据转换为词嵌入形式,即将每个单词映射到一个连续的向量空间中。然后,这些词嵌入被输入到RNN或其变体中,通过递归的方式计算每个时间步的输出。在LSTM和GRU中,通过引入门控机制来更好地控制信息的流动,从而更有效地捕捉文本中的长距离依赖关系。

解码器

解码器是Seq2Seq模型中的一个组成部分,与编码器相对应。其主要功能是利用编码器生成的向量(通常称为上下文向量或隐藏状态)来生成目标序列。在自然语言处理中,解码器通常被用来生成另一个句子或文本序列,如机器翻译中的目标语言句子、对话系统中的回复等。

解码器通常由循环神经网络RNN或LSTM、GRU构成。这些网络结构允许解码器在处理序列数据时保持对之前信息的记忆。解码器接收编码器的输出作为初始隐藏状态,并根据这个状态逐步生成目标序列的每个元素。具体而言,解码器在每个时间步都会接收两个输入:一个是来自上一个时间步的输出,另一个是来自编码器的上下文向量。解码器利用这两个输入来计算当前时间步的隐藏状态,并基于这个状态生成目标序列的下一个元素。

这个过程会一直持续到生成结束符号或达到最大序列长度为止。

贪婪搜索

贪婪搜索是一种常用的搜索策略。在NLP的文本生成任务中,如机器翻译、图像描述生成等,模型通常会为每个可能的输出单词生成一个概率分布。贪婪搜索就是在每一步中选择概率最大的单词作为输出,直到生成完整的句子或达到某个终止条件。然而,由于它不考虑未来的影响,因此这种策略并不总是能得到全局最优解。

穷举搜索

穷举搜索是一种搜索策略,它尝试所有可能的解决方案,直到找到满足条件的解或遍历完所有可能的解。穷举搜索会列举出所有可能的解决方案或候选解。对于每一个候选解,穷举搜索会进行检验,看其是否满足给定的条件或是否为最优解。如果找到了满足条件的解,则停止搜索;如果遍历完所有可能的解仍未找到满足条件的解,则宣告失败。

束搜索

束搜索是一种启发式搜索算法,特别适用于序列生成任务,如机器翻译、语言模型生成等。束搜索维护一个大小为束宽的候选列表,在生成序列时不仅考虑当前最有可能的单词,还综合考虑之前的累积得分。随着生成的序列逐渐增长,模型会根据评分机制不断地更新候选列表,并保持其大小不超过束宽。在生成完整序列之后,束搜索会从候选列表中选择得分最高的序列作为最终的输出。

注意力机制

注意力机制是一种关键技术,用于增强模型在处理序列数据时的表现。它允许模型在处理输入序列时动态地分配注意力权重,将重点集中在与当前任务相关的部分上,而不是一概而论地平均处理整个序列。

在序列到序列模型中,例如机器翻译或文本摘要,编码器-解码器结构通过注意力机制使得解码器能够集中精力处理与当前要生成的输出相关的编码器状态。这种方式使得模型能够更有效地处理长序列,并且能够更好地捕捉输入序列中的语义信息和结构。

机器学习

机器翻译是指将一段文本从一种语言自动翻译到另一种语言。

10.12.1 读取和预处理数据

我们先定义一些特殊符号。其中“<pad>”(padding)符号用来添加在较短序列后,直到每个序列等长,而“<bos>”和“<eos>”符号分别表示序列的开始和结束。

!tar -xf d2lzh_pytorch.tar

import collections
import os
import io
import math
import torch
from torch import nn
import torch.nn.functional as F
import torchtext.vocab as Vocab
import torch.utils.data as Data
import sys
# sys.path.append("..")  # 将父目录添加到系统路径中,以便导入d2lzh_pytorch
import d2lzh_pytorch as d2l
PAD, BOS, EOS = '<pad>', '<bos>', '<eos>'  # 定义特殊符号
os.environ["CUDA_VISIBLE_DEVICES"] = "0"  # 设置使用 GPU 编号为 0 的设备
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')  # 选择使用 GPU 还是 CPU
print(torch.__version__, device)  # 打印 PyTorch 版本和当前使用的设备
1.5.0 cpu

接着定义两个辅助函数对后面读取的数据进行预处理。

[5]:

# 将一个序列中所有的词记录在all_tokens中以便之后构造词典,然后在该序列后面添加PAD直到序列
# 长度变为max_seq_len,然后将序列保存在all_seqs中
def process_one_seq(seq_tokens, all_tokens, all_seqs, max_seq_len):
    all_tokens.extend(seq_tokens)
    seq_tokens += [EOS] + [PAD] * (max_seq_len - len(seq_tokens) - 1)
    all_seqs.append(seq_tokens)
# 使用所有的词来构造词典。并将所有序列中的词变换为词索引后构造Tensor
def build_data(all_tokens, all_seqs):
    vocab = Vocab.Vocab(collections.Counter(all_tokens),
                        specials=[PAD, BOS, EOS])
    indices = [[vocab.stoi[w] for w in seq] for seq in all_seqs]
    return vocab, torch.tensor(indices)

为了演示方便,我们在这里使用一个很小的法语—英语数据集。在这个数据集里,每一行是一对法语句子和它对应的英语句子,中间使用'\t'隔开。在读取数据时,我们在句末附上“<eos>”符号,并可能通过添加“<pad>”符号使每个序列的长度均为max_seq_len。我们为法语词和英语词分别创建词典。法语词的索引和英语词的索引相互独立。

def read_data(max_seq_len):
    # in和out分别是input和output的缩写
    in_tokens, out_tokens, in_seqs, out_seqs = [], [], [], []
    with io.open('fr-en-small.txt') as f:
        lines = f.readlines()
    for line in lines:
        in_seq, out_seq = line.rstrip().split('\t')
        in_seq_tokens, out_seq_tokens = in_seq.split(' '), out_seq.split(' ')
        if max(len(in_seq_tokens), len(out_seq_tokens)) > max_seq_len - 1:
            continue  # 如果加上EOS后长于max_seq_len,则忽略掉此样本
        process_one_seq(in_seq_tokens, in_tokens, in_seqs, max_seq_len)
        process_one_seq(out_seq_tokens, out_tokens, out_seqs, max_seq_len)
    in_vocab, in_data = build_data(in_tokens, in_seqs)
    out_vocab, out_data = build_data(out_tokens, out_seqs)
    return in_vocab, out_vocab, Data.TensorDataset(in_data, out_data)

将序列的最大长度设成7,然后查看读取到的第一个样本。该样本分别包含法语词索引序列和英语词索引序列。

max_seq_len = 7
in_vocab, out_vocab, dataset = read_data(max_seq_len)
dataset[0]
(tensor([ 5,  4, 45,  3,  2,  0,  0]), tensor([ 8,  4, 27,  3,  2,  0,  0]))

含注意力机制的编码器—解码器

我们将使用含注意力机制的编码器—解码器来将一段简短的法语翻译成英语。下面我们来介绍模型的实现。

编码器

  • 在编码器中,我们通过词嵌入层将输入语言的词索引转换为词的表征,然后将其输入到多层门控循环单元中。例如,在PyTorch的nn.GRU实现中,经过前向计算后,除了返回输出外,还会得到每个时间步的多层隐藏状态。这些输出是指最后一层隐藏层在每个时间步的隐藏状态,而不牵涉到输出层的计算。注意力机制会将这些输出用作键和值的项目。

class Encoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 drop_prob=0, **kwargs):
        super(Encoder, self).__init__(**kwargs)
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.rnn = nn.GRU(embed_size, num_hiddens, num_layers, dropout=drop_prob)
    def forward(self, inputs, state):
        # 输入形状是(批量大小, 时间步数)。将输出互换样本维和时间步维
        embedding = self.embedding(inputs.long()).permute(1, 0, 2) # (seq_len, batch, input_size)
        return self.rnn(embedding, state)
    def begin_state(self):
        return None

下面我们来创建一个批量大小为4、时间步数为7的小批量序列输入。设门控循环单元的隐藏层个数为2,隐藏单元个数为16。编码器对该输入执行前向计算后返回的输出形状为(时间步数, 批量大小, 隐藏单元个数)。门控循环单元在最终时间步的多层隐藏状态的形状为(隐藏层个数, 批量大小, 隐藏单元个数)。对于门控循环单元来说,state就是一个元素,即隐藏状态;如果使用长短期记忆,state是一个元组,包含两个元素即隐藏状态和记忆细胞。

[9]:

encoder = Encoder(vocab_size=10, embed_size=8, num_hiddens=16, num_layers=2)
output, state = encoder(torch.zeros((4, 7)), encoder.begin_state())
output.shape, state.shape # GRU的state是h, 而LSTM的是一个元组(h, c)

[9]:

(torch.Size([7, 4, 16]), torch.Size([2, 4, 16]))

 注意力机制

我们将实现10.11节(注意力机制)中定义的函数𝑎𝑎:将输入连结后通过含单隐藏层的多层感知机变换。其中隐藏层的输入是解码器的隐藏状态与编码器在所有时间步上隐藏状态的一一连结,且使用tanh函数作为激活函数。输出层的输出个数为1。两个Linear实例均不使用偏差。其中函数𝑎𝑎定义里向量𝑣𝑣的长度是一个超参数,即attention_size

def attention_model(input_size, attention_size):
    model = nn.Sequential(nn.Linear(input_size, attention_size, bias=False),
                          nn.Tanh(),
                          nn.Linear(attention_size, 1, bias=False))
    return model

注意力机制的输入包括查询项、键项和值项。设编码器和解码器的隐藏单元个数相同。这里的查询项为解码器在上一时间步的隐藏状态,形状为(批量大小, 隐藏单元个数);键项和值项均为编码器在所有时间步的隐藏状态,形状为(时间步数, 批量大小, 隐藏单元个数)。注意力机制返回当前时间步的背景变量,形状为(批量大小, 隐藏单元个数)。

def attention_forward(model, enc_states, dec_state):
    """
    enc_states: (时间步数, 批量大小, 隐藏单元个数)
    dec_state: (批量大小, 隐藏单元个数)
    """
    # 将解码器隐藏状态广播到和编码器隐藏状态形状相同后进行连结
    dec_states = dec_state.unsqueeze(dim=0).expand_as(enc_states)
    enc_and_dec_states = torch.cat((enc_states, dec_states), dim=2)
    e = model(enc_and_dec_states)  # 形状为(时间步数, 批量大小, 1)
    alpha = F.softmax(e, dim=0)  # 在时间步维度做softmax运算
    return (alpha * enc_states).sum(dim=0)  # 返回背景变量

在下面的例子中,编码器的时间步数为10,批量大小为4,编码器和解码器的隐藏单元个数均为8。注意力机制返回一个小批量的背景向量,每个背景向量的长度等于编码器的隐藏单元个数。因此输出的形状为(4, 8)。

seq_len, batch_size, num_hiddens = 10, 4, 8
model = attention_model(2*num_hiddens, 10) 
enc_states = torch.zeros((seq_len, batch_size, num_hiddens))
dec_state = torch.zeros((batch_size, num_hiddens))
attention_forward(model, enc_states, dec_state).shape
torch.Size([4, 8])

含注意力机制的解码器

我们直接将编码器在最终时间步的隐藏状态作为解码器的初始隐藏状态。这要求编码器和解码器的循环神经网络使用相同的隐藏层个数和隐藏单元个数。

在解码器的前向计算中,我们先通过刚刚介绍的注意力机制计算得到当前时间步的背景向量。由于解码器的输入来自输出语言的词索引,我们将输入通过词嵌入层得到表征,然后和背景向量在特征维连结。我们将连结后的结果与上一时间步的隐藏状态通过门控循环单元计算出当前时间步的输出与隐藏状态。最后,我们将输出通过全连接层变换为有关各个输出词的预测,形状为(批量大小, 输出词典大小)。

[13]:

class Decoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 attention_size, drop_prob=0):
        super(Decoder, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.attention = attention_model(2*num_hiddens, attention_size)
        # GRU的输入包含attention输出的c和实际输入, 所以尺寸是 num_hiddens+embed_size
        self.rnn = nn.GRU(num_hiddens + embed_size, num_hiddens, 
                          num_layers, dropout=drop_prob)
        self.out = nn.Linear(num_hiddens, vocab_size)
    def forward(self, cur_input, state, enc_states):
        """
        cur_input shape: (batch, )
        state shape: (num_layers, batch, num_hiddens)
        """
        # 使用注意力机制计算背景向量
        c = attention_forward(self.attention, enc_states, state[-1])
        # 将嵌入后的输入和背景向量在特征维连结, (批量大小, num_hiddens+embed_size)
        input_and_c = torch.cat((self.embedding(cur_input), c), dim=1) 
        # 为输入和背景向量的连结增加时间步维,时间步个数为1
        output, state = self.rnn(input_and_c.unsqueeze(0), state)
        # 移除时间步维,输出形状为(批量大小, 输出词典大小)
        output = self.out(output).squeeze(dim=0)
        return output, state
    def begin_state(self, enc_state):
        # 直接将编码器最终时间步的隐藏状态作为解码器的初始隐藏状态
        return enc_state

训练模型

  • 在实现 batch_loss 函数时,我们计算一个小批量的损失。解码器在初始时间步的输入是特殊字符BOS。随后的时间步中,解码器的输入是样本输出序列在前一时间步的词,即使用了强制教学。与之前在第10.3节中实现 word2vec 相似,我们在这里也使用掩码变量,以避免填充项对损失函数计算的影响。

def batch_loss(encoder, decoder, X, Y, loss):
    batch_size = X.shape[0]
    enc_state = encoder.begin_state()
    enc_outputs, enc_state = encoder(X, enc_state)
    # 初始化解码器的隐藏状态
    dec_state = decoder.begin_state(enc_state)
    # 解码器在最初时间步的输入是BOS
    dec_input = torch.tensor([out_vocab.stoi[BOS]] * batch_size)
    # 我们将使用掩码变量mask来忽略掉标签为填充项PAD的损失, 初始全1
    mask, num_not_pad_tokens = torch.ones(batch_size,), 0
    l = torch.tensor([0.0])
    for y in Y.permute(1,0): # Y shape: (batch, seq_len)
        dec_output, dec_state = decoder(dec_input, dec_state, enc_outputs)
        l = l + (mask * loss(dec_output, y)).sum()
        dec_input = y  # 使用强制教学
        num_not_pad_tokens += mask.sum().item()
        # EOS后面全是PAD. 下面一行保证一旦遇到EOS接下来的循环中mask就一直是0
        mask = mask * (y != out_vocab.stoi[EOS]).float()
    return l / num_not_pad_tokens

在训练函数中,我们需要同时迭代编码器和解码器的模型参数。

[15]:

def train(encoder, decoder, dataset, lr, batch_size, num_epochs):
    enc_optimizer = torch.optim.Adam(encoder.parameters(), lr=lr)  # 使用 Adam 优化器优化编码器参数
    dec_optimizer = torch.optim.Adam(decoder.parameters(), lr=lr)  # 使用 Adam 优化器优化解码器参数
    loss = nn.CrossEntropyLoss(reduction='none')  # 使用交叉熵损失函数,但不进行平均
    data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)  # 创建数据迭代器,并设置批次大小和是否随机打乱数据
    for epoch in range(num_epochs):  # 循环训练指定轮次
        l_sum = 0.0  # 初始化损失总和
        for X, Y in data_iter:  # 遍历每一个批次数据
            enc_optimizer.zero_grad()  # 清空编码器优化器的梯度
            dec_optimizer.zero_grad()  # 清空解码器优化器的梯度
            l = batch_loss(encoder, decoder, X, Y, loss)  # 计算每个批次的损失
            l.backward()  # 反向传播计算梯度
            enc_optimizer.step()  # 更新编码器参数
            dec_optimizer.step()  # 更新解码器参数
            l_sum += l.item()  # 将每个批次的损失累加到损失总和
        if (epoch + 1) % 10 == 0:  # 每 10 个 epoch 打印一次损失
            print("epoch %d, loss %.3f" % (epoch + 1, l_sum / len(data_iter)))  # 打印当前 epoch 编号和平均损失

接下来,创建模型实例并设置超参数。然后,我们就可以训练模型了。

[16]:

embed_size, num_hiddens, num_layers = 64, 64, 2  # 设置编码器和解码器的参数
attention_size, drop_prob, lr, batch_size, num_epochs = 10, 0.5, 0.01, 2, 50  # 设置注意力机制和训练参数
encoder = Encoder(len(in_vocab), embed_size, num_hiddens, num_layers, drop_prob)  # 创建编码器
decoder = Decoder(len(out_vocab), embed_size, num_hiddens, num_layers, attention_size, drop_prob)  # 创建解码器
train(encoder, decoder, dataset, lr, batch_size, num_epochs)  # 开始训练模型
epoch 10, loss 0.451
epoch 20, loss 0.169
epoch 30, loss 0.062
epoch 40, loss 0.107
epoch 50, loss 0.049

 预测不定长的序列

在10.10节(束搜索)中我们介绍了3种方法来生成解码器在每个时间步的输出。这里我们实现最简单的贪婪搜索。

[17]:

def translate(encoder, decoder, input_seq, max_seq_len):
    in_tokens = input_seq.split(' ')
    in_tokens += [EOS] + [PAD] * (max_seq_len - len(in_tokens) - 1)
    enc_input = torch.tensor([[in_vocab.stoi[tk] for tk in in_tokens]]) # batch=1
    enc_state = encoder.begin_state()
    enc_output, enc_state = encoder(enc_input, enc_state)
    dec_input = torch.tensor([out_vocab.stoi[BOS]])
    dec_state = decoder.begin_state(enc_state)
    output_tokens = []
    for _ in range(max_seq_len):
        dec_output, dec_state = decoder(dec_input, dec_state, enc_output)
        pred = dec_output.argmax(dim=1)
        pred_token = out_vocab.itos[int(pred.item())]
        if pred_token == EOS:  # 当任一时间步搜索出EOS时,输出序列即完成
            break
        else:
            output_tokens.append(pred_token)
            dec_input = pred
    return output_tokens

简单测试一下模型。输入法语句子“ils regardent.”,翻译后的英语句子应该是“they are watching.”。

[18]:

input_seq = 'ils regardent .'
translate(encoder, decoder, input_seq, max_seq_len)

[18]:

['they', 'are', 'watching', '.']

评价翻译结果

评价机器翻译结果通常使用BLEU(Bilingual Evaluation Understudy)[1]。对于模型预测序列中任意的子序列,BLEU考察这个子序列是否出现在标签序列中。

下面来实现BLEU的计算。

def bleu(pred_tokens, label_tokens, k):
    """计算 BLEU 评分。
    参数:
        pred_tokens (list[str]): 预测的词语序列。
        label_tokens (list[str]): 实际的词语序列。
        k (int):  n-gram 的最大长度。
    返回值:
        float: BLEU 评分。
    """
    len_pred, len_label = len(pred_tokens), len(label_tokens)  # 获取预测序列和实际序列的长度
    score = math.exp(min(0, 1 - len_label / len_pred))  # 计算长度惩罚因子,确保预测序列的长度不超过实际序列的长度
    for n in range(1, k + 1):  # 循环计算 1 到 k 的 n-gram 匹配度
        num_matches, label_subs = 0, collections.defaultdict(int)  # 初始化匹配计数和实际序列的 n-gram 统计字典
        for i in range(len_label - n + 1):  # 遍历实际序列,统计每个 n-gram 的出现次数
            label_subs[''.join(label_tokens[i: i + n])] += 1  # 将 n-gram 作为键,其出现次数作为值存储在字典中
        for i in range(len_pred - n + 1):  # 遍历预测序列,计算匹配的 n-gram 数量
            if label_subs[''.join(pred_tokens[i: i + n])] > 0:  # 判断该 n-gram 是否在实际序列中出现过
                num_matches += 1  # 如果出现过,匹配计数加 1
                label_subs[''.join(pred_tokens[i: i + n])] -= 1  # 在字典中将该 n-gram 的计数减 1,防止重复计数
        score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n))  # 计算 n-gram 匹配度,并乘以之前计算的长度惩罚因子
    return score  # 返回最终的 BLEU 评分

接下来,定义一个辅助打印函数。

def score(input_seq, label_seq, k):
    pred_tokens = translate(encoder, decoder, input_seq, max_seq_len)
    label_tokens = label_seq.split(' ')
    print('bleu %.3f, predict: %s' % (bleu(pred_tokens, label_tokens, k),
                                      ' '.join(pred_tokens)))

预测正确则分数为1。

score('ils regardent .', 'they are watching .', k=2)
bleu 1.000, predict: they are watching .

score('ils sont canadienne .', 'they are canadian .', k=2)
bleu 0.658, predict: they are actors .
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值