- 博客(17)
- 收藏
- 关注
原创 【膳逸】ChatGLM3-6B大模型loar微调3
创建实例,运行LLaMA-Factory,如下图所示,在http://127.0.0.0:6006运行,打开微调页面。项目的data当中,选中即可进行数据集的相关预览。设置学习率、训练轮数、最大梯度范围、最大样本数,之后开始训练。最后的微调效果是会将问题更加的细化,并且回答得更加偏向专业领域。在数据集文件中进行配置,将前面预处理后的数据集配置到。
2024-06-24 10:13:42 246
原创 【膳逸】微信小程序“饭搭子默契测试”
小程序提供一系列关于饮食习惯和偏好的问题,问题范围包括喜欢的食物类型、饮食禁忌、用餐习惯等。两个人分别回答相同的问题,回答完成后,小程序会对两人的答案进行匹配分析。根据两人的回答相似度,生成一个默契度评分,提供详细的匹配分析报告,指出相同和不同的地方。用户可以将测试结果分享给其他朋友,提供互动功能,例如邀请朋友一起参与测试。启用页面右上角的分享功能,用户可以通过点击页面右上角的分享按钮,将页面分享给其他微信用户。
2024-06-24 02:10:24 232
原创 【膳逸】微信小程序“饮食版MBTI测试”
现如今,MBTI人格测试非常流行,所以我们的微信小程序也把握时代风向,将MBTI测试与我们的饮食APP相结合,用户可以在测一测界面选择自己感兴趣的测试进行体验。每个问题设置了两个选项,每个选项都与I、N、T、P、E、S、F、J这几种性格因素的权重有关,根据用户的答案选择,累计权重,从而生成用户的“ 饮食版MBTI ”。
2024-06-24 01:59:55 274
原创 【膳逸】微信小程序“识别包装袋”
基本调用逻辑为:前端向图像模型yolov5传输图像,图像模型yolov5通过识别输出图像中的食品包装,输出结果为食品包装内容,再将这个输出再作为输入传给chatglm3-6b,获得识别出的食物的包装分析内容。导航栏中的“ 识别 ”功能分为“ 识别食物 ”和“ 识别包装袋 ”两个模块,这篇文章先讲述“ 识别包装袋”模块的部分。
2024-06-24 01:50:19 190
原创 【膳逸】微信小程序“识别食物”
基本调用逻辑为:前端向图像模型yolov5传输图像,图像模型yolov5通过识别输出图像中的食物,输出结果为食物的名称,将这个输出再作为输入传给chatglm3-6b,获得识别出的食物的营养分析和推荐食谱。导航栏中的“ 识别 ”功能分为“ 识别食物 ”和“ 识别包装袋 ”两个模块,这篇文章先讲述“ 识别食物”模块的部分。
2024-06-24 01:45:49 228
原创 【膳逸】ChatGLM3-6B大模型loar微调2
在Autodl云平台创建实例,运行LLaMA-Factory,如下图所示,在http://127.0.0.0:6006运行,打开微调页面。在数据集文件中进行配置,将前面预处理后的数据集配置到微调项目的data当中,选中即可进行数据集的相关预览。设置学习率、训练轮数、最大梯度范围、最大样本数,之后开始训练。
2024-06-21 16:23:16 144
原创 【膳逸】ChatGLM3-6B大模型loar微调
在电脑本地终端进行自定义服务的配置,完成配置后终端无任何异常输出,此时进入云平台将项目服务运行开启。完成上述内容后,即可在。因为是在AutoDL云平台上进行实例创建的,所以开启服务后需要与本地建立连接,所以要在webui.py中进行端口的指定。访问微调可视化平台。
2024-06-15 21:43:41 234
原创 【膳逸】饮食问答数据收集
数据来源公开数据集:利用现有的饮食相关数据集,如食品成分数据库。 网络爬虫:从网站(如健康、饮食专栏、问答论坛等)抓取数据。数据工具使用Selenium进行浏览器自动化 IP代理池 模拟多浏览器多用户浏览网页 时间延迟,避免操作太快而被识别为机器人 Concurrent设置多线程以进一步提速
2024-05-30 19:51:15 187
原创 【膳逸】饮食问答规划数据集
糖分是现代饮食中常见的成分,主要来源包括自然存在于食物中的糖和加工食品中添加的糖。除了直接的健康影响,糖分摄入过多还可能影响血糖控制,导致能量波动和情绪不稳。减少糖分摄入的方法包括选择未加工或少加工的全食物、阅读食品标签以识别隐藏糖、减少食用甜食和含糖饮料等策略。A3: "隐藏糖指的是在加工食品中不易被察觉的糖分,如酱料、面包和即食餐中的糖。A2: "根据世界卫生组织的建议,自由糖的摄入量不应超过总能量摄入的10%。A1: "糖分摄入过多可能会导致肥胖、2型糖尿病、心脏病等多种健康问题。
2024-05-30 15:30:44 503
原创 【膳逸】PyTorch 深度学习实践:线性模型和梯度下降算法
在 PyTorch 中定义线性模型非常直接,使用本报告通过 PyTorch 框架实现了基础的线性模型,并使用梯度下降算法进行了训练。在实际应用中,线性模型虽然简单,但在对数据进行初步分析和预测时非常有效。此外,理解线性模型和梯度下降算法的基本概念是深入学习更复杂神经网络结构的基础。通过本次实践,我不仅加深了对线性模型的理解,而且熟悉了使用 PyTorch 进行模型构建、训练和参数调整的过程。在时候项目实训中,我可以在此基础上探索更多的机器学习模型和深度学习算法,进一步完善模型。
2024-05-22 23:10:31 294 2
原创 【膳逸】Prompt Learning Report2
初步通过用户调查和反馈收集到,用户不仅需要符合营养需求的餐单,还期望这些餐单能够考虑到他们的饮食限制和口味偏好。
2024-05-06 21:23:48 601
原创 【膳逸】My Journey Learning Prompt Engineering: A Beginner‘s Report
此次项目实训,我在团队中的角色定位是模型开发,那么前期我先是进行了关于prompt的学习。这篇博客中,我将详细分享我在学习提示工程过程中的具体经历、所面临的技术挑战,以及我如何逐步克服这些问题。
2024-05-06 21:10:21 292
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人