dijkstra

题目:

给出一张包含n个节点、m条边的无向图(无重边,无自环),请你求出图上两点s,t间的最短路径长度。

其中1<=n<=500,1<=m<=10000,1<=任意边权<=500000;

Input

第一行两个数n,m,分别表示节点数和边数,以空格隔开; 之后m行,每行3个数u,v,w[i],表示点u和v间有一条权值为w[i]的边; 最后一行,两个数s,t表示选择的两个点,以空格隔开。

Output

输出一个数,表示s,t间最短路径的长度。

Sample Input

4 3
1 2 6
1 3 4
2 4 2
3 4

Sample Output

12

代码:

#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std;

int ab[510][510];
int s[550];
int book[550];
int n,m,x,y;

int dijkstra()
{
	memset(s,0x3f,sizeof s);
	
	//自身路径为零  
	s[x]=0;
	
	// 每次循环都会剔除掉1个点,因此需要for循环遍历n次。
	for(int i=0;i<n;i++)
	{
		// t代表当前未被访问的距离原点最近的点 
		int t=-1;
		
		for(int j=1;j<=n;j++)
			/*当前的点没有被踢出,并且当前点的距离比t点的距离小,则更新t。
			t == -1表示还未开始找到s中最小值,则把s[1]加入。*/
			if(!book[j]&&(t==-1||s[t]>s[j]))
				t=j;
		
		//找到当前距离原点最小值的点,则把点进行标记踢出。
		book[t]=1;
		
		//t点更新与它相连的所有点。
		for(int j=1;j<=n;j++)
			s[j]=min(s[j],ab[t][j]+s[t]);
	}
	return s[y];
}

int main()
{
	memset(ab,0x3f,sizeof ab);
	cin>>n>>m;
	while(m--)
	{
		int a,b,c;
		cin>>a>>b>>c;
		
		//ab[a][b]=min(ab[a][b],c)有重边时这样用 
		ab[a][b]=c;
		
		//表示双向图  
		ab[b][a]=c;
	}
	memset(s,0x3f,sizeof s);
	cin>>x>>y;
	int t=dijkstra();
	printf("%d\n",t);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值