题目:
给出一张包含n个节点、m条边的无向图(无重边,无自环),请你求出图上两点s,t间的最短路径长度。
其中1<=n<=500,1<=m<=10000,1<=任意边权<=500000;
Input
第一行两个数n,m,分别表示节点数和边数,以空格隔开; 之后m行,每行3个数u,v,w[i],表示点u和v间有一条权值为w[i]的边; 最后一行,两个数s,t表示选择的两个点,以空格隔开。
Output
输出一个数,表示s,t间最短路径的长度。
Sample Input
4 3 1 2 6 1 3 4 2 4 2 3 4
Sample Output
12
代码:
#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std;
int ab[510][510];
int s[550];
int book[550];
int n,m,x,y;
int dijkstra()
{
memset(s,0x3f,sizeof s);
//自身路径为零
s[x]=0;
// 每次循环都会剔除掉1个点,因此需要for循环遍历n次。
for(int i=0;i<n;i++)
{
// t代表当前未被访问的距离原点最近的点
int t=-1;
for(int j=1;j<=n;j++)
/*当前的点没有被踢出,并且当前点的距离比t点的距离小,则更新t。
t == -1表示还未开始找到s中最小值,则把s[1]加入。*/
if(!book[j]&&(t==-1||s[t]>s[j]))
t=j;
//找到当前距离原点最小值的点,则把点进行标记踢出。
book[t]=1;
//t点更新与它相连的所有点。
for(int j=1;j<=n;j++)
s[j]=min(s[j],ab[t][j]+s[t]);
}
return s[y];
}
int main()
{
memset(ab,0x3f,sizeof ab);
cin>>n>>m;
while(m--)
{
int a,b,c;
cin>>a>>b>>c;
//ab[a][b]=min(ab[a][b],c)有重边时这样用
ab[a][b]=c;
//表示双向图
ab[b][a]=c;
}
memset(s,0x3f,sizeof s);
cin>>x>>y;
int t=dijkstra();
printf("%d\n",t);
return 0;
}