判断图是否构成树(和大家可能不太一样的方法)

3 篇文章 0 订阅
1 篇文章 0 订阅

数据结构课的一道题目:

问题

给定一个无向图,判断该图是否构成树。

输入

输入有若干测试样例。第一行是测试样例个数,接下来若干测试样例。
每个测试样例的第一行是结点数n,而且结点用1,2,..., n编号。
第二行是边数m,接下来是 m个结点对。

输出

如果一个图是树,则打印“YES",否则打印"NO"。每个输出占一行。

输入样例

3

3
2
1 2
2 3

3
3
1 2
2 3
1 3

3
1
2 3

输出样例

YES
NO
NO

首先,一个图能构成树需要满足以下三个条件:

① 边数 = 点数 - 1; ②没有回路也即没有环; ③没有孤立点即图是连通的;的

基于以上三个条件我们便有了以下思路:

1)在输入点数和边数的时候就开始判断二者的关系;

2)用一个set类型的容器dots来存已经连通的结点,访问到一条边时把未在dots中的点的存入dots中,若一条边的两个端点都在dots中,那么肯定会形成环(可以自己举例判断一下);

3)用一个set类型的容器visit来存已经访问过的结点,若visit的数目不等于给出的结点数目,说明有孤立点,图不是连通的。

代码如下:

/*思路:1.能构成树的图的条件:边数=点数-1,没有环,没有孤立的点也即通过边访问的点数与实际点数相等
        2. 输入边数和点数时先判断条件1
        3.用dots来存已经连通的点,说明里面的点已经构成路径,如果一条中的两个点都在dots里
          说明会构成环,可以自己举几个例子,这是条件2的判断
        4.用visit来存已经访问过的点,如果有孤立点,则visit的数目不等于点数
*/
#include<bits/stdc++.h>
using namespace std;
bool isTree(vector<vector<int>>&edges,int num_of_nodes){
    set<int> dots;  //存点的集合
    set<int> visit; //访问过的点的集合
    int num = edges.size();
    for(int i = 0;i < num;++i){
        vector<int> tmp = edges[i];
        if(dots.find(tmp[0])!=dots.end()&&dots.find(tmp[1])!=dots.end())
            return false;
        if(dots.find(tmp[0])==dots.end()){
            dots.insert(tmp[0]);
            visit.insert(tmp[0]);
        }
        if(dots.find(tmp[1])==dots.end()){
            dots.insert(tmp[1]);
            visit.insert(tmp[1]);
        }
    }
    if(visit.size() != num_of_nodes) return false;
    return true;
}
int main(){
    int t;  cin>>t; //测试样例个数
    while(t--){
        vector<vector<int>> edges;
        int num_of_nodes;    cin>>num_of_nodes;
        int num_of_edges;    cin>>num_of_edges;
        for(int i = 0;i < num_of_edges;++i){
            int n1,n2;  cin>>n1>>n2;
            vector<int> edges_i;
            edges_i.push_back(n1);  edges_i.push_back(n2);
            edges.push_back(edges_i);
        }
        if(num_of_edges != num_of_nodes - 1){
            cout<<"NO"<<endl;
            continue;
        }
        if(isTree(edges,num_of_nodes))
            cout<<"YES"<<endl;
        else
            cout<<"NO"<<endl;
    }
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值