数论——自我总结

文章介绍了gcd的性质,包括gcd(a,a-b)的公式,并展示了如何找到使gcd(x+k,y)=1的最小k值。接着讨论了质数的概念和质因数分解,以及埃拉托斯特尼筛法的复杂度。还提到了卡特兰数、欧几里得算法在求最大公约数中的应用,以及关于模运算和同余理论的基本概念。
摘要由CSDN通过智能技术生成

一.gcd的一个公式

Educational Codeforces Round 139 (Rated for Div. 2) D

  1. 公式gcd(a,b)=gcd(a,a-b);

  1. 让gcd(x+k,y)==1的时候要满足y所有的因子p使得(x+k)%p=0中k的最小值就是

    (p-(x+k)%p)%p (就是x+k这个数加多少就可以有p这个因子)--- gcd(2+k,3)=1      

      (3 -(  2+k  )%3 )%3 (0)                                                                (2+k)%3=0   

    


#include <bits/stdc++.h>

using i64 = long long;

constexpr int N = 1e7;

int mp[N + 1];//mp[i]储存此时i这个数的最大质因子是谁
std::vector<int> primes;

void solve() {
    int x, y;
    std::cin >> x >> y;
    
    int d = y - x;
    if (d == 1) {
        std::cout << -1 << "\n";
        return;
    }
    
    int ans = 1E9;
    while (d > 1) {//遍历所有d的质因子
        int p = mp[d];
        d /= p;
        ans = std::min(ans, (p - y % p) % p);
    }
    
    std::cout << ans << "\n";
}

int main() {
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    
    for (int i = 2; i <= N; i++) {
        if (!mp[i]) {
            mp[i] = i;
            primes.push_back(i);
        }
        
        for (auto p : primes) {
            if (i * p > N) break;
            mp[i * p] = p;
            if (i % p == 0) break;
        }
    }
    int t;
    std::cin >> t;

    
    while (t--) solve();
    
    return 0;
}

二.质数

  1. 质数是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。

  1. 质数和合数都是对大于1的自然数的概念,小于等于1的既不是质数也不是合数。

  1. 质因数(素因数或质因子)在数论里是指能整除给定正整数的质数。 除了1以外,两个没有其他共同质因子的正整数称为互质。 因为1没有质因子,1与任何正整数(包括1本身)都是互质。 正整数的因数分解可将正整数表示为一连串的质因子相乘,质因子如重复可以用指数表示。

  1. 所以如果n是一个平方数的话,那么它有奇数个因子        非完全平方数的所有因数的总个数是偶数个。

5.埃氏筛的复杂度


#include <iostream>
#include <algorithm>

using namespace std;

const int N= 1000010;

int primes[N], cnt;
bool st[N];

void get_primes(int n)
{

    for(int i=2;i<=n;i++)
    {
        if(st[i])continue;
        primes[++cnt]=i;
        for(int j=i;j<=n;j+=i)
        {
            st[j]=true;
        }
    }
}

int main()
{
    int n;
    cin >> n;

    get_primes(n);

    cout << cnt << endl;

    return 0;
}

6.卡特兰数

7.欧几里得复杂度logn

8.int范围内,一个数的约数最多有1500个

9.n中最多只包含一个大于sqrt(n)的质因子

10.gcd即最大公约数,lcm即最小公倍数。

11.首先给出a×b=gcd×lcm

     证明:令gcd(a,b)=k,a=xk,b=yk,则a×b=x*y*k*k,而lcm=x*y*k,所以a*b=gcd*lcm。

所以求lcm可以先求gcd,而求gcd的方法就是辗转相除法,也叫做欧几里德算法,核心为gcd(m,n)=gcd(n,m%n)

12.  2的20次方有1048576 7

13.   2的30次方有1073741824 10

14. 这里有个结论,前N个数里面的质数的个数为N/lnN 。

15 素数的个数无限多(不存在最大的素数)

证明:反证法,假设存在最大的素数P,那么我们可以构造一个新的数2 * 3 * 5 * 7 * … * P + 1(所有的素数乘起来加1)。显然这个数不能被任一素数整除(所有素数除它都余1),这说明我们找到了一个更大的素数。

16. 存在任意长的一段连续数,其中的所有数都是合数(相邻素数之间的间隔任意大)

证明:当0<a<=n时,n!+a能被a整除。长度为n-1的数列n!+2, n!+3, n!+4, …, n!+n中,所有的数都是合数。这个结论对所有大于1的整数n都成立,而n可以取到任意大。

17. 所有大于2的素数都可以唯一地表示成两个平方数之差。

证明:大于2的素数都是奇数。假设这个数是2n+1。由于(n+1)^2=n^2+2n+1,(n+1)^2和n^2就是我们要找的两个平方数。下面证明这个方案是唯一的。如果素数p能表示成a^2-b^2,则p=a^2-b^2=(a+b)(a-b)。由于p是素数,那么只可能a+b=p且a-b=1,这给出了a和b的唯一解。

18 当n为大于2的整数时,2^n+1和2^n-1两个数中,如果其中一个数是素数,那么另一个数一定是合数。

    证明:2^n不能被3整除。如果它被3除余1,那么2^n-1就能被3整除;如果被3除余2,那 么   2^n+1就能被3整除。总之,2^n+1和2^n-1中至少有一个是合数。

19. 如果p是素数,a是小于p的正整数,那么a^(p-1) mod p = 1。

   这个证明就有点麻烦了。

首先我们证明这样一个结论:如果p是一个素数的话,那么对任意一个小于p的正整数a,a, 2a, 3a, …, (p-1)a除以p的余数正好是一个1到p-1的排列。例如,5是素数,3, 6, 9, 12除以5的余数分别为3, 1, 4, 2,正好就是1到4这四个数。

反证法,假如结论不成立的话,那么就是说有两个小于p的正整数m和n使得na和ma除以p的余数相同。不妨假设n>m,则p可以整除a(n-m)。但p是素数,那么a和n-m中至少有一个含有因子p。这显然是不可能的,因为a和n-m都比p小。

用同余式表述,我们证明了:

(p-1)! ≡ a * 2a * 3a * … * (p-1)a (mod p)

也即:

(p-1)! ≡ (p-1)! * a^(p-1) (mod p)

两边同时除以(p-1)!,就得到了我们的最终结论:

1 ≡ a^(p-1) (mod p)

三.(正)约数

约数个数 约数总和

四、gcd扩展

五、

原文

20. 原文
21.
数论中的重要概念。给定一个 正整数m,如果两个 整数a和b满足a-b能够被m整除,即(a-b)/m得到一个整数,那么就称整数a与b对 m同余,记作a≡b(mod m)。对模m同余是整数的一个等价关系。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值