趣味三角——第9章——Zeno错失无穷小

9 如果Zeno仅需再认识到这一点

 (Had Zeno Only Known This!)

——无限多的数字之和可能具有有限的值

One, Two, Three—Infinity

(1,2,3——无穷)

——George Gamow的一本书名

空间是否可以无限分割,或者是否存在一个最小的空间单位,一个无法进一步分割的数学原子(atom)? 运动是连续的,还是只是一连串的快照,就像旧电影中的帧一样,它们本身在时间上被冻结了? 诸如此类的问题曾被古希腊的哲学家们激烈(hotly)争论过,时至今日仍在争论不休——对终极元素粒子(elementary particle)的永无止境的探索的见证,即据称它是构成所有物质的神秘莫测的基石。

生活在公元前五世纪的古希腊Elea的哲学家Zeno用四个悖论总结了这些问题——他称它们为“论证(arguments)”——其目的是证明连续性概念中固有的根本困难。在其中一个被称为“二分法(dichotomy)”的悖论中,他声称(purports)要展示运动是不可能的:为了让一个跑步者(runner)从A点跑到B点,他必须首先跑完AB之间距离的一半,然后是剩余距离的一半,然后是剩余距离的一半,依此类推,无穷无尽(图 52)。Zeno认为,由于这涉及无限多的步数,因此跑步者永远不会到达目的地。[1]

用现代术语表述Zeno悖论很容易。 设AB的距离为1;首先跑完这段距离的一半,然后跑完剩下的一半,依此类推,跑步者跑完的总距离为

1/2 + 1/4 + 1/8 + 1/16 + ...  。

这个总和是无穷无尽的几何级数(geometric progression)或序列(series),公比为1/2。随着我们添加的项越来越多,总和不断增长并趋近于1。它永远不会达到1,更不会超过1; 然而,我们可以通过简单地添加越来越多的项来使总和尽可能接近1。用现代语言来说,就是随着项数的增长无限趋近界限,其总和无限趋近“极限(limit)”1。 因此,覆盖的总距离恰好为1;由于跑步者跑完部分距离所需的时间间隔(假设他保持恒定速度)也遵循相同的进程,他将在有限的时间内跑完整个距离。这就解决了“悖论”。

--------------------------图52 跑步者悖论问题-------------------------------

然而,古希腊人并不认同这种推理。他们不能接受这样一个事实——对我们今天来说如此明显——无限多的数字之和可能具有有限的值。他们毫不费力地把一个级数的所有项加起来以达到所需的精度,但是将这个过程扩展到无穷大的想法给他们带来了巨大的智力上的痛苦。这反过来又导致了他们“恐怖无限量(horror infiniti)”——他们惧怕无限量由于无法处理它,古希腊人禁止无穷大进入他们的数学系统尽管他们凭直觉牢牢掌握了极限概念——阿基米德(Archimedes)的抛物线求积法证明了这一点——但他们一想到要一直走到无穷

大就退缩了。[2] 结果,Zeno的悖论一直是数代古希腊学者的恼怒(irritation)和尴尬(embarrassment)之源。 由于未能圆满地解决悖论而感到沮丧(frustrated),他们转向哲学甚至形而上学(metaphysical)推理,从而使问题更加地混乱。[3]

几乎没有一个数学分支不受几何级数——有限或无限——的影响。 我们首先在算术中以重复小数的形式遇到它们,它们不过是变相的(disguise)无限几何级数;例如,循环小数0.1212...仅仅是无穷级数12/100+12/100^{2}+12/100^{3}+...的缩写。几何级数是大多数财务计算的核心,这是以固定利率投资的资金随时间呈几何级数增长的结果。在微积分中我们介绍了幂级数(power series),最简单的幂级数是无限几何级数1 + x + x^2 + ...,通常用于测试其他级数的收敛性(convergence)。Syracuse的阿基米德(约公元前 287-212年)巧妙地使用几何级数来求抛物线段的面积——曲线形状的第一个求积(quadratures)之一。[4] 而现代典型的(vintage)分形(fractals),那些错综复杂的(intricate)自我复制(self-replicating)曲线,无休止地到处(hither and thither)蜿蜒(meander),不过是自相似(self-similarity)原理的应用,其中几何级数是最简单的情况(图53)。荷兰艺术家Maurits C. Escher(1898-1972年)的数学绘图引起了整整一代科学家的兴趣,他在他的几幅版画中使用了几何级数;在这里,我们展示其中之一幅,冠名为<<Smaller and Smaller>>(越来越小)(图54)

图53 雪花曲线的构建:从一个等边三角形开始,在每条边的中间三分之一处构建一个较小的等边三角形,然后将中间三分之一切开,得到一个类似大卫之星(Star of David)的图形。对新图形重复该过程以获得48边形图形。以这种方式继续,我们得到一系列形状,在极限情况下,它们接近称为雪花曲线的褶皱曲线(snowflake curve)(也以其发现者瑞典数学家Helge von Koch[1870–1924]的名字命名为Koch曲线。这些形状的周长和面积遵循几何级数,公比分别为4/3和4/9。由于这些比率分别大于和小于1,周长趋于无穷大,而面积趋于原始三角形面积的8/5。雪花曲线是第一个已知的“病理性曲线(pathological curve)”; 它处处不平滑,因此处处不可导。今天,这种自我复制的形状被称为分形(fractals)。

 图54 M. C. Escher的“越来越小”(1956年)。©1997 Cordon-Art-Baarn-Holland. 版权所有---------------------------

数学学生中存在的一个常见误解(misconception)(无疑是受到畅销书籍中发现的错误陈述的助长(fueled))是欧几里德(Euclid)的伟大著作<<几何原理>>只涉及几何诚然,几何占据了本书的大部分内容,但它也包含对算术、数论和级数理论的广泛处理第八卷(VIII)的所有部分和第九卷(IX)的部分内容都致力于“连续比例”,即形成几何级数的数字(自毕达哥拉斯发现音程与弦长的简单比例相对应以来,古希腊人最喜欢的主题)

第九卷命题35用文字说明了如何求几何级数的和:If as many numbers as we please be in continued proportion, and there be subtracted from the second [number] and the last [number] numbers equal to the first, then, as the excess of the second is to the first, so will the excess of the last be to all those before it.

翻译成现代语言:假如级数项是,a,ar,ar^{2},...,ar^n以及所有其前面项的和S,则(ar - a): a = (ar^{n} - a): S交叉乘然后简化, 我们得到几何级数前面n项的求和公式,

S=\frac{a(r^{n}-1)}{r-1} [5]---------------------------------------------------(1)

欧几里德利用这个结果证明了(第九卷第36号命题)一个数的优雅性质:假如级数

1 + 2 + 2^{2} + ...+ 2^{n-1}之和是一个质数(或素数)(prime number),则这个质数与2^{(n-1)}之积是一个完满数(perfect number)。对于一个正整数 N,如果它是其除 N 之外的正除数的和,那么它就是一个完满数;前两个完满数是 6 = 1 + 2 + 3 和 28 = 1 + 2 + 4 + 7 + 14。因为级数 1 + 2 + 2^2 + ...+ 2^{(n-1)} 的和是 2^{n} - 1,这个命题指的是无论何时,只要2^{n} - 1 是质数,那么 2^{(n-1)}.(2^n - 1) 就是一个完满数。因此,6是完满数,因为6 = 2.3 = 2^{(2-1)}.( 2^2 - 1),和28是完满数,因为 28 = 4.7 = 2^{(3-1)}.( 2^3 - 1)。接下来的两个完满数是 496 = 16.31 = 2^{(5-1)}.(2^{6}-1)8,128 = 64.127 = 2^{(7-1)}.(2^7-1) 和 8,128 = 64.127 = 2^{(7-1)}.(2^7-1)。这四个是古希腊人所仅知的四个完满数。[6]

这就是古希腊人认识的极限。他们在几何学和数论的发展中有效地利用了等式(1),允许 n 任意大(“如你所愿的任意多的数字”);但他们并没有迈出真正让n超出所有界限的关键步骤——让它趋于无穷大。如果他们不局限于这种自我强加的禁忌(taboo),他们可能会提前2000年预见到微积分的发现。[7]

在当今,随着极限概念的牢固确立,我们可以毫不疑虑(have no qualms)地争辩说,如果r是一个绝对值小于1的数字(-1 < r < 1),则随着r ->∞,等式(1)中r^{n}趋近于0, 因此,求极限后得到 S = -a/(r –1),或者,等价地,写成这样

S = a/(1- r) ------------------------(2)

这就是我们熟悉的无限(infinite)几何级数求和公式。[8] 因此,在Zeno悖论中的序列1/2 + 1/4 + 1/8 + 1/16 + ...的和为(1/2)(1-1/2)=1 , 而循环小数0.1212...= 12/100+12/100^2+12/100^3+...和为(12/100)(1-1/100)=12/99 = 4/33。事实上,我们可以使用等式(2)去证明“每一个”循环小数都等于某个分数即,等于某个比率数(a rational number)。

现在,进入三角学主题。我们将会展示“每一个无限三角级数都可以在几何上构造,并且可以仅使用直尺(straightedge)和圆规(compass),使用图形完成求和。”[9] 我们的出发点基于这个事实——具有通比r的无限级数的和,当且仅当-1 < r < 1时,其收敛于(converge)某个极限值。现在,任何介于-1和1之间的数都恰好是某个介于0°到180°之间的角的余弦值;例如 ,0.5是60°的余弦值,-0.707(更确切地说,是-\sqrt{2}/2)是135°的余弦值。(注意,对于正弦函数而言并非如此:存在两个角,30°和(180°-30°)= 150°,其正弦为0.5,但没有介于30°到180°之间的角的正弦值等于-0.707。) 因此,让我们令 r = cos α ,或者相反,令 \alpha = cos^{-1}r

x 轴上,令P_0点为原点,x = 1点为P_1点(图55)。在P_1点,我们作一条射线使其与 x 轴正向构成角α,沿着这条射线,我们标记一条单位长为P_1Q_1的线段。从Q_1点出发,我们作一条与 x 轴垂直的线段,交点为P_2我们得到 P_1P_2=1cos α = cos α 以及P_0P_2=1 + cos\alpha。现在我们重复执行这个过程:在P_2点,我们作一条射线使其与 x 轴正向构成角α,沿着这条射线,我们标记一条单位长为P_1P_2 的线段,使其与P_1P_2等长(使用圆规以P_2点为圆心并打开圆规长度为P_1P_2)。从Q_2点出发,我们作一条与 x 轴垂直的线段,交点为P_3,我们得到 P_2 P_3 = cos \alpha. cos \alpha = cos^{2} \alpha以及P_0 P_3 = 1 + cos \alpha + cos^2\alpha。继续这种行为执行下去,乍一看,我们似乎不得不无限次地重复这个过程。但是,正如我们现在要展示的那样,要确定整个级数的和,仅需执行前两步就足够了

 图55 几何级数的构造,S = 1 + cos \alpha + cos^{2} \alpha +...

 首先,直角三角形P_1 Q_1 P_2, P_2 Q_2 P_3 ,,如此,等等,都是相似的,具有相同的角α;而随后的点Q_1Q_2,...一定会位于直线m上。我们声称 m x 轴的交点标记了整个序列的总和S,相应地,标记这个点为P_\infty。为了证明这一点,我们注意到线段P_1 Q_1=1,P_2 Q_2 = cos\alpha , P_2 Q_2 = cos^{2}\alpha ,如此等等,它们以通比cos α构成了一个几何级数(与原来的级数一样)。在这个级数中回退一步,我们得到P_0 Q_0 = 1/ cos \alpha = sec \alpha,现在,斜三角形(oblique triangles)三角形 P_0 Q_0 P_\infty,P_1 Q_1 P_\infty,...是相似的;采用这些三角形中的前两个,我们得到P_0 P_\infty/P_0 Q_0 = P_1 P_\infty/P_1 Q_1,或者

\frac{S}{sec \alpha}= \frac{s-1}{1}

将因子1/sec α 换回cos α,并对S解方程,我们得到 S = 1/(1 – cos α) =  1/(1 –r),表明线段P_0P_\infty是整个序列的和。我们重复:构造前两个点Q_1Q_2就足够了;这两点确定了直线m,其与 x 轴的交点确定了点P_\infty

这种构造不仅提供了几何级数的几何解释,还让我们看到当我们改变公比 r 时会发生什么。图 56 和 57 分别展示了 α = 60°,r = 1/2 和  α = 45°,r=\sqrt{2}/2时的这种结构;对应的和分别为1/(1 - 1/2) = 2 和 1/(1-\sqrt{2}/2)=2+\sqrt{2}=3.144。当我们改变 rα 时,点P_0P_1保持不变,但所有其他点将沿着它们各自的线移动。对于α = 90°(即,r = 0),Q_1正好位于P_1之上,因此,从Q_1点向 x 轴作一条垂线并拉回到P_1点:该序列将不再进行任何进一步,其总和为 S=P_0P_1=1。当我们将α从90°减少到0°,直线m变得越来越陡;同时,点P_2 ,P_3,...移动右边,P_\infty也是如此:级数和变得越来越大。当α ->0°时,直线 m 变成了一条水平线,并且它与 x 轴的交点向无穷远后退:级数发散。

---------------------------图56 当α = 60°时的结构---------------------------

---------------------------图57 当α = 45°时的结构---------------------------

假如公比 r 是负数,α 将介于 90°至 180°之间。还是以P_1点作为始点(图58),画一条射线使其与 x 轴正向成 α 度角(钝角(obtuse));这将我们带到Q_1点,且P_1Q_1=1。我们现在从Q_1点向 x 轴作垂线,交点为 P_2点(注意,P_2点现在位于 P_1点的左边);我们有 P_1 P_2 = cos \alpha(一个负值),因此, P_0 P_2 = 1 + cos \alpha。以P_2点作为始点,画一条射线使其与 x 轴正向成 α 度角;注意,因为P_0P_2是指向左边的,则射向将向下指。在这边射线上,我们划出一段线段使P_2Q_2使其与线段P_1P_2长度相等。从Q_2点向 x 轴作垂线,交点为 P_3点(注意,P_3点位于P_2点的右边);我们有,P_2 P_3 =cos^{2}\alpha(一个正值),因此,P_0 P_3 = 1 + cos \alpha +cos^{2}\alpha。按这种方式继续执行,我们得到越来越小的直角三角形,每个直角三角形都嵌套在它前面两步的三角形中。所有这些三角形都是相似的。

---------------------------图58 当 α 是钝角时的情况---------------------------

    和前面一样,点Q_1,Q_2,...,位于直线 m 上,其与 x 轴的交点为我们提供了整个序列的总和。用P_\infty表示这个点,我们注意到,它位于点P_{2n}的右侧,但位于P_{2n+1}的左侧:该级数从上到下交替求和,具体取决于我们是对奇数项还是偶数项求和。图 59 和 60 显示了α = 120°和 α = 150°的结构(即,分别为,r=-1/2-\sqrt{3}/2)。对于这两种情况,序列分别收敛于1/(1 + 1/2) = 2/3 ≈ 0.666 和 1/(1-\sqrt{3}/2)\approx 0.536

-------------------------图59 当 α = 120°时的构造---------------------------

-------------------------图60 当 α = 150°时的构造---------------------------

现在,我们再次变动角α,这次从90°到180°递增。直线 m 将占据一个越来越陡的位置,然而斜率为负。同时,点P_{2n}将向左移向P_{0},而点P_{2n+1}将向右移向点P_{1}。当α->180°时(即,当r -> -1时),点Q_{2n+1}将聚集在P_{0}之上,而Q_{2n}将聚集在点P_{0}之上, 这样直线 m 将占据相对于线段P_0P_1而言几乎对称的位置,与点 x = 1/2 的右侧相交。事实上,这是公式 S = 1/(1-r) 当r -> -1 时的值。然而,同时,点P_{2n}将拥挤在P_{0}点周围(即,x = 0 的周围),而点P_{2n+1}将拥挤在P_{1}点周围(即,x = 1 的周围),表明该序列倾向于在0和1之间振荡。

α =180°时(即,当r =-1时),这种情况突然改变,发生这种情况时,所有的点Q_{2n+1}P_{0}点合并(也与P_{2n}点合并),而点Q_{2n}也与P_{1}点合并。然后直线 m 将与 x 轴合并,在无限多点与它相交,并且无法确定点P_\infty。乍一看,这种情况似乎很矛盾。因为对于α = 180°而言,我们的序列就成了1 - 1 + 1 + 1 + –...,其部分和在 0 和 1 之间振荡。但事实并非如此!级数实际上可以等于任意数,这只能说明级数不收敛,对其求和没有意义。[10]

序列 1 - 1 + 1 + 1 + –...看似奇怪的行为在 18 世纪初引起了很多争议。Gottfried Wilhelm Leibniz(1646–1716)是微积分学的牛顿的共同发明人,他认为由于和

可能是 0 或 1 的概率相等,因此它的“真实”值应该是它们的平均值,即 1/2,与当r = −1时,公式 S = 1/(1–r)。在今天的我们看来,这种粗心大意的推理可能令人难以置信,但在Leibniz时代,收敛和极限的概念还不为人所理解,无限级数以纯粹操纵的方式处理,就好像它们是普通的有限的和的扩展一样。

Leibniz摸索这个序列时,本质上是哲学家的他一定想到了Zeno,在他两千多年前的前辈。如果Zeno知道我们的构造,也许这会让他更容易接受无限项的和可能是有限的事实。其结果将是深远的,因为如果古希腊人没有如此顽固地阻止无穷大进入他们的世界,数学的进程可能会永远改变。

注释和资料来源:

1. 这个悖论的一个变体是说,跑步者要从 A B,他必须首先到达 AB 之间的中点 C; 但为了到达 C,他必须首先到达 AC 之间的中点 D,依此类推。

2. 对于这种恐惧的原因,请参阅我的书<<e: The Story of a Number>>(数e的故事)( Princeton, N.J.: Princeton University Press, 1994年),第43-47页。

3. 即使在今天,一些思想家仍拒绝认为Zeno的悖论已经解决。参见William I.McLaughlin 的文章“Resolving Zeno’s Paradoxes (解决Zeno的悖论)”,<<Scientific American>>(科学美国人杂志)(1994年11月),以及A. W. Moore的文章“A Brief History of Infinity (无穷小量简史)”, 科学美国人,1995年4月。另见Adolf Gr¨unbaum的著作<<Modern Science and Zeno’s Paradoxes>>(现代科学与Zeno悖论)( Middletown,Conn.: Wesleyan University Press, 1967年)。

4. 参见 Thomas L.Heath 的著作<<The Works of Archimedes>>(阿基米德著作集)(1897年初版; New York: Dover, 1953年重印)的“Quadrature of the Parabola (抛物线的正交)”相关章节。

5. 现在证明写在S = a + ar + ar^2 + ... + ar^{n-1} ,用r乘以这个等式,从原来的方程减去这个结果,除了第一项和最后一项之外都被消掉,我们得到(1 - r) S = a - ar^n, 从而我们得到S = a(1 - r^n)/(1 - r) = a(r^n - 1)/(r -1)

6. 注意,2^{n}-1对于第一个质数 n 而言其并非都是质数;例如,2^{11}-1 = 2047 = 23.89是复合的(composite),因此,2^{11-1}.(2^{11} - 1)不是完满数。2^n- 1形式的素数(其中n是质数)称为Mersenne质数(Mersenne primes),以 Marin Mersenne(1588–1648)的名字命名,它是法国米尼姆修道士(friar);截至1996年,已知的Mersenne素数只有 34 个,其中最大的是2^{1,259,787}-1,这是当年发现的 378,632 位数字。因为每个Mersenne都产生一个完满数,所以他们的故事密切相关。公式 2^{n-1}.( 2^n -1)只能产生偶数,这是必然的。1770 年,Leonhard Euler证明了命题 36 的逆命题:每个偶完满数都必须具有 2^{n-1}.( 2^n - 1)的形式,其中2^{n}-1是质数。不知道是否存在奇完满数,也不知道完满数的数量是有限的还是无限的。有关更多详细信息,请参阅任何有关数论的好书。

7. 参见 Thomas L.Heath 的著作<<The Works of Archimedes>>(阿基米德著作集)(1897年初版; New York: Dover, 1953年重印)的第7章节“阿基米德对微积分学的预测”。

8. 等式(2)的一个常见(虽然不是很严格)证明是写成

S = a + ar + ar^2 + ar^3 + ... = a + r (a + ar + ar^2 + ... ) = a + r S,从而,我们得到 S(1 - r) = a S = a /(1 - r)。

9. 后续资料是基于我的文章“Geometric Construction of the Geometric Series(几何级数的几何构造)”,发表在“International Journal of Mathematics Education in Science and Technology(国际科技数学教育杂志)”,第8卷,第1编号(1997年1月),第89-96页。

10. 为了证明这一点,令 a b 是使得 a + b = 1 成立的任意两个数,则我们的级数就成了(a + b)-( a - b)+( a + b)-( a - b)+ -...。我们称其和为 S。将括号向右移动一位,我们得到级数 S = a +( b- a)- (b- a)+ (b - a)- (b - a)+ -...。我们置 b - a = c, 则 S = a + c - c + c - c + -...。我们可以用两种方式求和最后一个级数,这取决于我们如何安排括号:S = a + (c c) + (c c) + (c c) + ... = a ,或者 S = a + c  –(c c) – (c c) – (c c) – ... = a + c  = b。因此,该级数可以有 a b 作为其总和,并且由于将 1 分为 ab 完全是任意的,所以 S 可以有任何值。当然,这仅仅表明部分项之和不会收敛于一个固定值,因此级数发散(虽然不是无穷大)。

内容来源:

<<Trigonometric Delights>> 作者:Eli Maor

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值