因为线性相关的定义,就是存在不全为零的数
k
1
,
k
2
,
⋯
,
k
s
k_{1},k_{2},\cdots ,k_{s}
k1,k2,⋯,ks , 因为它是一个解,它的倍数,也就是方程左右同时乘以相同的倍数,那么得到的k也必定是它的解,因此,说线性相关得到的就是无数非零解。
因此说线性相关的充分必要条件是
∣
A
∣
=
0
|A| = 0
∣A∣=0
为什么线性相关可以得到无数非零解?
于 2024-12-04 16:14:50 首次发布