数学线代
文章平均质量分 83
线性代数相关概念理解
ZhangJiQun&MXP
大语言模型训练需要百卡算力,但人脑的功耗只有20瓦。道阻且长。
展开
-
理解逆矩阵 理解单位矩阵
a/b(当b不为0的时候有意义);同理你理解逆矩阵就是与矩阵成导数关系。那么行列式的值不为0,就说明逆矩阵存在,这样就合情合理了。首先,我们先来看看这个数的倒数:·倒数其实矩阵的逆矩阵也跟倒数的性质一样,不过只是我们习惯用A-1表示:问题来了,既然是和倒数的性质类似,那为什么不能写成1/A?其实原因很简单,主要是因为矩阵不能被除。不过1/8倒可以被写成...原创 2018-10-28 23:56:05 · 3840 阅读 · 2 评论 -
彻底理解线性代数; 特征值,特征向量; 线性代数的本质 矩阵的逆矩阵的实质: 行列式值为0的实质: Essense Of Linear Algebra的理解
Essense Of Linear Algebra让你完全理解线性代数。线性空间中,当你选定一组基之后,不仅可以用一个向量来描述空间中的任何一个对象,而且可以用矩阵来描述该空间中的任何一个运动(变换),从而得出矩阵是线性空间里的变换的描述。而使某个对象发生对应运动(变换)的方法,就是用代表那个运动(变换)的矩阵,乘以代表那个对象的向量。转换为数学语言: 是矩阵, 是向量, 相当于将 作线性变换...原创 2018-11-03 00:10:33 · 2347 阅读 · 0 评论 -
矩阵的等价,相似,合同,正定判定和关系
矩阵等价(秩等)定义:对同型矩阵A、B,存在可逆阵P和Q,使得B=PAQB=PAQ充要条件:A和B的秩相等补充:向量组AB等价(r(A)=r(B)=r(AB);可以相互线形表示;极大线形无关组同)转置理解:就是关于x=y对称的同体,二维是关于y=x 对称的平面图形,三维是关于f(x,y)=x-y 对称的 立方体或者图形,以此类推|A转置|=|A|:可是用行列式值对的意义理解:...原创 2018-11-02 11:43:52 · 31878 阅读 · 3 评论 -
对偶性的实质,向量内积就是矩阵叉乘
对偶性的实质就是转置,【1,2】的转置是【1 2】这从向量的角度就是维度的增加,向量之间有唯一的对应关系。这里的两个向量就是对偶的关系。也就是我们所说的转置矩阵。向量内积就是矩阵叉乘...原创 2018-11-06 09:37:02 · 2293 阅读 · 0 评论 -
特征值和特征向量的由来 特征值和特征向量定义: 特征值和特征向量的几何意义 特征值和特征向量的应用
特征向量其实反应的是矩阵A本身固有的一些特征,本来一个矩阵就是一个线性变换,当把这个矩阵作用于一个向量的时候,通常情况绝大部分向量都会被这个矩阵A变换得“面目全非”,但是偏偏刚好存在这么一些向量,被矩阵A变换之后居然还能保持原来的样子,于是这些向量就可以作为矩阵的核心代表了。于是我们可以说:一个变换(即一个矩阵)可以由其特征值和特征向量完全表述,这是因为从数学上看,这个矩阵所有的特征向量组成了这个...原创 2018-11-01 22:14:20 · 7860 阅读 · 2 评论 -
线性代数的本质: 矩阵: 矩阵的逆矩阵: 线性代数基础知识
Essense Of Linear Algebra让你完全理解线性代数。这个博客不错:https://blog.csdn.net/a727911438/article/details/77531973水面滴水就是一个很相像的例子,滴水后成为三维,之后趋于平静,也就是行程面,波纹逐渐变大,水面起伏变小,特征值起决定性作用,水面的起伏以及水波纹的放大,你全部想成数字,水面就是矩阵,起伏的程度就...原创 2018-11-03 12:15:49 · 3274 阅读 · 3 评论 -
行列式值的意义以及与秩的关系还有线性相关线性无关还有极大无关组的他们之间的联系。
行列式秩不满,说明存在一行或者多行为(000000....)具体有几行记得看秩与行数只差了,这样的话行列式的值为0;相反当值不为0 是,说明满秩。线形相关:就是秩不满,存在一个或多个未知数来表示其他未知数,这样他们就产生了关系,也就是线性相关。若秩满则说明各各未知数之间相互独立,不存在关系 ,线形无关。补(用老乡关系就很好的理解,相关说明来自同一省,秩是不同省份,同省秩为1,...原创 2018-11-01 17:19:00 · 13540 阅读 · 1 评论 -
线性代数齐次方程求解与非齐次方程的解的关系
非齐次线性方程组的任意两个解之差是对应的齐次线性方程组的解。非齐次线性方程组的解与对应的齐次线性方程组的解之和还是非齐次线性方程组的解。所以,如果知道非齐次线性方程组的某个解X,那么它的任意一个解x与X的差x-X,一定是对应的齐次线性方程组的解,所以非齐次线性方程组的通解x=X+Y,Y是对应的齐次线性方程组的通解,而Y是某个基础解系的线性组合,Y=k1ξ1+k2ξ2+...+krξr。...原创 2018-11-01 17:04:31 · 18963 阅读 · 0 评论 -
矩阵与行列式的区别 行列式简单理解(二三阶)
区别如下: 1. 矩阵是一个表格,行数和列数可以不一样;而行列式是一个数,且行数必须等于列数。只有方阵才可以定义它的行列式,而对于长方阵不能定义它的行列式。 2. 两个矩阵相等是指对应元素都相等;两个行列式相等不要求对应元素都相等,甚至阶数也可以不一样,只要运算代数和的结果一样就行了。 3.两矩阵相加是将各对应元素相加;两行列式相加,是将运算结果相加,在特殊情况下(比如有行或列相同),...原创 2018-10-30 00:14:56 · 21969 阅读 · 2 评论 -
正交矩阵; 实对称矩阵; 为什么实对称矩阵一定可以对角化; AB=0 r(A)+r(B)<=n 证明; 初等矩阵; 初等矩阵的逆矩阵; 矩阵的左除右除;
在做矩阵的逆运算(也就是出除法运算)时,分母的左右取决余原乘式左右;右除式A/B,相当于A*inv(B)即A右乘B的逆矩阵;左除式A\B,相当于inv(A)*B即A的逆矩阵左乘B...原创 2018-10-29 17:39:11 · 4493 阅读 · 0 评论 -
行列式运算法则 矩阵的运算及其运算规则:
1、三角形行列式的值,等于对角线元素的乘积。计算时,一般需要多次运算来把行列式转换为上三角型或下三角型2、交换行列式中的两行(列),行列式变号(交换)3、行列式中某行(列)的公因子,可以提出放到行列式之外。(倍乘)(注:矩阵是全部元素都乘,都提取)4、行列式的某行乘以a,加到另外一行,行列式不变,常用于消去某些元素。(倍加)5、若行列式中,两行(列)完全一样,则行列式为0;可以推论,如果两...原创 2018-10-29 17:01:19 · 87624 阅读 · 0 评论 -
余子式和余子式 伴随矩阵定义 性质 二阶矩阵求伴随矩阵 伴随矩阵理解(列排)
在线性代数中,一个方形矩阵的伴随矩阵是一个类似于逆矩阵的概念。如果矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数。然而,伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法。...原创 2018-10-29 00:43:12 · 11605 阅读 · 0 评论 -
线性代数点积,对偶
点积也叫内积,与顺序无关。就是向量a,s,将a投影到s后的长度与s的长度的乘积。Essense of Linear Algebra 视频7:向量的内积,我们可以用投影来很好的理解,但是起实质是矩阵的乘法运算,一个1行2列的矩阵 * 一个两行一列的矩阵,其实就是向量的内积形式,只不过第一个矩阵是由一个二维向量经过投影的函数关系输出为一维的(这也是矩阵转置的实质)在内积。一维乘以...原创 2018-11-06 00:41:00 · 1252 阅读 · 0 评论