使用Mathematica绘制Mandelbrot集合

这次我们主要介绍Mathematica中的绘制Mandelbrot集合的函数:MandelbrotSetPlot[]

这个函数,使用是非常简单的。直接运行:

MandelbrotSetPlot[]

我们可得到图形

绘制中心点的改变:

MandelbrotSetPlot[{-0.65 + 0.47 I, -0.4 + 0.72 I}]

绘制参数:MaxIterations

这个参数越大,越能够把准确地表达每个点的逃逸绘制次数。这样绘制的图形会更真实。

x

MandelbrotSetPlot[{-0.65 + 0.47 I, -0.4 + 0.72 I},MaxIterations -> 200]

可以通过改变此参数,来观测绘制效果的变化。当放大图形时,增加此参数,能够改善绘制质量。

绘制函数

绘制函数,是个很重要的参数。其选择,在某种程度上决定了图像(色彩)风格。

x

MandelbrotSetPlot[ColorFunction->Hue]

MandelbrotSetPlot[ColorFunction->"RedBlueTones"]

MandelbrotSetPlot[{0.2+0.45 I,0.4+0.65 I},ColorFunction->"GreenPinkTones"]

MandelbrotSetPlot[ColorFunction->(If[#3==1,Blue,GrayLevel[5#3]]&)]

MandelbrotSetPlot[ColorFunction->(If[#1==1,Black,RGBColor[(1-#3)^2,(1-#3)^3,1-#3]])]

MandelbrotSetPlot[ColorFunction->(If[#3>9/10,Black,Blue]&)]

逃逸半径

MandelbrotSetPlot[EscapeRadius->1000]

通过改变逃逸半径,我们会发现:对于相近的点,其相应的迭代次数,区别性越大。

ImageResolution

这个参数,控制着绘制的精细程度。

MandelbrotSetPlot[ImageResolution->300]

PlotTheme

带来鲜亮的颜色方案

MandelbrotSetPlot[PlotTheme->"Marketing"]

MandelbrotSetPlot[PlotTheme->"Marketing",ColorFunction->ColorData["PastelColorGradient"]]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值