这次我们主要介绍Mathematica中的绘制Mandelbrot集合的函数:MandelbrotSetPlot[]
这个函数,使用是非常简单的。直接运行:
MandelbrotSetPlot[]
我们可得到图形
绘制中心点的改变:
MandelbrotSetPlot[{-0.65 + 0.47 I, -0.4 + 0.72 I}]
绘制参数:MaxIterations
这个参数越大,越能够把准确地表达每个点的逃逸绘制次数。这样绘制的图形会更真实。
x
MandelbrotSetPlot[{-0.65 + 0.47 I, -0.4 + 0.72 I},MaxIterations -> 200]
可以通过改变此参数,来观测绘制效果的变化。当放大图形时,增加此参数,能够改善绘制质量。
绘制函数
绘制函数,是个很重要的参数。其选择,在某种程度上决定了图像(色彩)风格。
x
MandelbrotSetPlot[ColorFunction->Hue]
MandelbrotSetPlot[ColorFunction->"RedBlueTones"]
MandelbrotSetPlot[{0.2+0.45 I,0.4+0.65 I},ColorFunction->"GreenPinkTones"]
MandelbrotSetPlot[ColorFunction->(If[#3==1,Blue,GrayLevel[5#3]]&)]
MandelbrotSetPlot[ColorFunction->(If[#1==1,Black,RGBColor[(1-#3)^2,(1-#3)^3,1-#3]])]
MandelbrotSetPlot[ColorFunction->(If[#3>9/10,Black,Blue]&)]
逃逸半径
MandelbrotSetPlot[EscapeRadius->1000]
通过改变逃逸半径,我们会发现:对于相近的点,其相应的迭代次数,区别性越大。
ImageResolution
这个参数,控制着绘制的精细程度。
MandelbrotSetPlot[ImageResolution->300]
PlotTheme
带来鲜亮的颜色方案
MandelbrotSetPlot[PlotTheme->"Marketing"]
MandelbrotSetPlot[PlotTheme->"Marketing",ColorFunction->ColorData["PastelColorGradient"]]