- 博客(51)
- 收藏
- 关注
原创 在Mathematica环境中做数值实验来观察逻辑映射的复杂度
对比上面的几幅图,可以得知:随着参数\lambda变大,收敛集合是间断性变大的。由于是在有限次实验情况下观测的,收敛集合不是真正意义下的收敛集,只是近似的。为了观测收敛集合的情况,可以做很多次实验,观察末尾一定数量的点集合,然后观看随着参数\lambda的变化,这个尾集合是怎样变化的。首先,对于不同的\lambda,将展示相应的收敛过程。(1)对于给定的\lambda,自迭代此映射的收敛集是什么?(2)对于不同的\lambda,相应的收敛集合是怎样变化的?(3)临界的\lambda是怎样确定的?
2025-06-09 15:51:27
349
原创 使用Mathematica实现Newton-Raphson收敛速度算法(简单高阶多项式)
【代码】使用Mathematica实现Newton-Raphson收敛速度算法(简单高阶多项式)
2025-06-08 14:14:20
413
原创 在Mathematica中使用Newton-Raphson迭代绘制一个花脸
【代码】在Mathematica中使用Newton-Raphson迭代绘制一个花脸。
2025-06-07 16:33:49
500
原创 在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)
尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式的。
2025-06-06 20:11:48
611
原创 在Mathematica中实现Newton-Raphson迭代的收敛时间算法
对于给定的比较简单的三次多项式,可以使用FixedPoint直接给出不动点,进而在一定程度上回答Cayley问题。但是这里不能够给出收敛速度。作为类比,这里的收敛速度,类似于绘制Mandelbrot集合的逃逸时间,可以用来对图形进行染色。收敛时间算法:对于给定的一个点,将计数以此点为初始点的迭代收敛速度,并将相应的计数划分为从0到255的三个等分区间中。
2025-06-04 20:47:33
408
原创 使用Mathematica观察多形式根的分布随参数的变化
有两种方式观察多项式的根随着参数变化:(1)直接制作一个小的动态视频;(2)绘制所有根形成的痕迹(locus)。绘制Root Locus:将二维的复数点列延展成一维的复数点列,然后使用CRPLot进行绘制。这里有个好处:可以直接观察到根的分布随着参数改变是怎样变化的。
2025-06-02 17:03:18
477
原创 在Mathematica中使用WhenEvent求解微分方程
在方形盒子中,建立球体碰撞侧壁时改变方向的运动模型。当初速度向量为无理数时,系统不再存在周期性解。模拟一个每次弹起后保持95%速度的弹跳球。绘制球体的动能、势能及总能量曲线图。模拟沿阶梯弹跳下落的球。
2025-05-30 16:15:15
565
原创 在Mathematica中求解带阻尼的波方程
这里主要示意一下,这个方程如何用Mathematica来求解以及在使用不同解法的时候,会遇到什么问题。这个时候,会遇到如下的问题提示。方法一:不额外附加边界条件。方法二:两次使用边界条件。
2025-05-29 20:01:58
536
原创 使用Mathematica绘制Littlewood多项式的根
这里,将介绍几个案例:在Mathematica中如何绘制Littlewood多项式的根所形成的图形。
2025-05-26 19:43:38
516
原创 在Mathematica中,使用鸟枪法求解在无穷远处的边值常微分方程
边界值问题最简单的例子是定义在区间a ≤ x ≤ b上的二阶常微分方程y′′ = f (x, y, y′),其边界条件为y(a) = α和y(b) = β,其中α和β是给定的常数。需要注意的是,由于自变量通常表示空间坐标,因此常用x表示(此处符号'≡d/dx)。我们将探讨几种计算上述二阶边值问题解的方法。
2025-05-25 20:22:18
669
原创 在Mathematica中使用ClickPoincarePlot2D绘制Poincare截面
【代码】在Mathematica中使用ClickPoincarePlot2D绘制Poincare截面。
2025-05-24 14:39:59
291
原创 使用Mathematica计算Lyapunov指数
李雅普诺夫特征指数在描述动力系统行为中起着至关重要的作用。它们衡量了从邻近初始点出发的轨道的平均发散或收敛速率。因此,它们可以用来分析极限集的稳定性,并检验对初始条件的敏感依赖性,即混沌吸引子的存在。),使用其中的函数LCEsC,很容易计算给定系统的Lyapunov指数。这里介绍一个软件包lce.m(思维空间中的一个离散动力系统。
2025-05-22 13:48:58
593
原创 使用Mathematica生成随机曼陀罗花
在Mathematica中,可以使用ResourceFunction调用RandomMandala来生成曼陀罗花。
2025-05-21 13:40:11
406
原创 使用Mathematica绘制一类矩阵的特征值图像
学习过线性代数的,都知道:矩阵的特征值非常神秘,但却携带着矩阵的重要信息。今天,我们将展示:一类矩阵,其特征值集体有着很好的分布特征。
2025-05-20 22:19:34
304
原创 使用Mathematica绘制双摆系统的Poincaré section
目标:绘制当alpha=0和alpha'>0时的Poincare截面(由点(beta,l_beta)组成)。
2025-05-19 19:12:45
566
原创 使用Python制作Lorenz吸引子的轨道生成视频
在前面一篇文章中,使用Pyhon绘制了Lorenz吸引子的简单图像。通过绘制Lorenz方程的三维轨迹,可以直观展示吸引子的混沌结构。这是最经典的成像方法,使用数值积分求解微分方程后,通过三维绘图库(如Matplotlib)生成图像。这次,我们实现绘制轨道生成的动态视频。
2025-05-18 09:04:19
740
原创 使用Python绘制Lorenz奇异吸引子轨道
为了在计算机上绘制Lorenz吸引子,我们需要对上述微分方程组进行数值积分。常用的数值积分方法包括欧拉法、龙格-库塔法等。这里使用SciPy的odeint函数对微分方程组进行数值积分。
2025-05-17 15:06:38
403
原创 使用Mathematica制作Lorenz吸引子的轨道追踪视频
Lorenz奇异吸引子是混沌理论中最早被发现和研究的吸引子之一,它由Edward Lorenz在1963年研究确定性非周期流时提出。Lorenz吸引子以其独特的"蝴蝶"形状而闻名,是混沌系统和非线性动力学的经典例子。
2025-05-16 20:26:58
649
原创 使用Mathematica绘制Clifford奇异吸引子
生成的混沌吸引子,参数a,b,c,d不同会产生不同的分形图案。其数学基础可能与 Clifford 代数或高维函数理论相关,例如 Clifford 代数在四维时空中的应用或 Clifford 分析中的 Dirac 算子与单演函数理论。Clifford Attractors 可能通过非线性微分方程或迭代映射生成,并在分形图像生成、混沌系统模拟或高维数据分析中发挥作用。目前关于 Clifford Attractors 的具体信息较少,需要进一步研究。Clifford Attractors 是一种由微分方程。
2025-05-15 17:21:24
314
原创 在Mathematica中使用BinCounts绘制de Jong吸引子
这个迭代非常慢,并且在运行中很容易代买存储问题。相反的,可以编译迭代器并同时归结到某统计堆。
2025-05-14 13:13:58
239
原创 Smooth Peter de Jong 奇异吸引子
Smooth Peter de Jong attractor 是混沌理论中的一种奇异吸引子,其动态特性由迭代方程驱动,能够生成复杂且艺术化的分形图案。总结来看,Smooth Peter de Jong attractor 通过简单的非线性方程揭示了复杂系统的内在秩序,成为连接数学、计算机科学与艺术的桥梁。从这个图形中,三个小黄点,分别代表a,b,c的值。通过改变这些参数的值,可以看到不同的图案。其中,参数 a,b,c,d 的微小变化会显著影响系统的演化轨迹,体现了混沌系统对初值的敏感性(即“蝴蝶效应”)。
2025-05-13 09:38:07
547
原创 在Mathematica中自编函数绘制Poincare圆盘
(即在几何处理中,根据预先定义的容差值判定多边形间的相似性,若顶点坐标或形状差异小于该阈值,则视作重复项进行剔除,避免因计算精度问题导致的冗余)(注:该函数通过调节初始顶点角度、多边形边数 p 及顶点交汇数 q,构建符合双曲密铺 {p,q} 条件的基准多边形,旋转参数 φ 可实现密铺图案的整体方位调整)(注:该函数基于双曲几何的 {p,q} 密铺规则,通过逐层反射和反演操作构建层级化的镶嵌结构,旋转参数 φ 用于调整密铺整体方向)对多边形或多边形列表的顶点进行关于双曲直线(可能为直线或圆弧)的反演变换。
2025-05-12 13:30:53
610
原创 在Mathematica中实现Poincare圆盘内的图形绘制
学习过复变函数的朋友都知道,复平面,单位球面和单位圆盘,是一维复流形的三个基本元素。使用Mathematica,能够很容易地实现在复平面内的图形绘制。在这篇文章中,将展示如何使用ResourceFunction援引官方文档,在Poincare圆盘中绘制双曲多边形。
2025-05-11 10:59:26
374
原创 使用Mathematica中的库函数求解Duffing方程(技术贴)
在Wolfram语言中,细化函数的加速优化面临挑战,因其处理的数组长度动态变化,既无法编译优化也无法转换为紧凑数组(packed arrays)。若推进过程占主导,可考虑采用更高效的ODE求解器(如并行化处理)。通过从较短初始线开始演化,观察其逐步拉伸、折叠的序列图,可直观展示相邻初始条件在混沌系统中的指数发散与相空间形变过程。本示例仅以点间距为判断准则,更复杂的标准(如曲率)也可使用,但单纯基于距离的准则更简洁。对于适当高阶的方法(如经典四阶龙格-库塔法),ODE求解器的步长与细化步骤的间隔相匹配。
2025-05-10 11:50:45
1257
原创 在Mathematica中加速绘制图形(LibraryLink)
若已有大量现成的数值代码,无论是通过 Wolfram 符号传输协议(WSTP)还是 LibraryLink,都能有效地将这些代码与 Wolfram 语言连接,实现从 Wolfram 语言驱动运行。另一方面,若正在开发数值计算程序,可以先用 Wolfram 语言进行原型开发,当某些部分出现性能瓶颈时,再使用 LibraryFunction 对这些关键模块进行加速。这里,将要简单介绍一下LibraryLink的使用。这个函数mlf就可以像Mathematica中的函数一样,可以计算复平面中的点。
2025-05-09 18:26:16
610
原创 使用Mathematica内置函数绘制Sierpinski地毯
除了SierpinskiCurve之外,Mathematica还内置了SierpinskiMesh这个函数,用来绘制地毯。
2025-05-08 19:54:45
394
翻译 在Mathematica中使用LSystem生成分形
在Mathematica中,使用L-System生成分形,需要借助ResourceFunction。关于这个函数,前面已经介绍过,这里就直接使用。通过下面代码,可以看到可视化这个复杂的例子:成像案例。
2025-05-08 16:39:06
27
原创 Mathematica中的ResourceFunction
在Mathematica中,ResourceFunction 的作用是访问并调用 Wolfram Function Repository(Wolfram 函数仓库)中用户或官方贡献的预定义函数。这里给出两个使用案例:MortonCurve和LevyCCurve。
2025-05-06 23:11:25
1008
原创 使用Mathematica绘制Sierpinski地毯
这样的动态效果,是有连续性的视觉效果。但是如果绘制图形的阶数比较大,也可以使用“整数”的方式,来达到类似的视觉效果。注意:此时的BSplineFunction的阶数为2(看起来比上面的要更加光滑)。
2025-05-05 21:08:06
330
原创 使用Mathematica绘制Peano Curve
皮亚诺(Peano)曲线,是一条可以填充平面的曲线。在Mathematica中,内置了函数PeanoCurve,可以用来绘制不同深度的皮亚诺曲线。这个函数,返回的是一个Line对象,为一串折线,可以使用Graphics函数,将相应图形绘制出来。上面的动画效果,也可以不是用BSplineFunction的参数化,而直接使用Line对象的前面i段,来实现动态效果。指定坐标范围之后,可以使用BSplineFuntion将Line对象,转成参数函数。可以通过DataRange指定坐标范围。
2025-05-04 18:57:43
548
原创 极坐标康托尔集合(Mathematica)
康托尔集合有很多种形式,其中一种是极坐标形式的。虽然前面已经给出过使用Python绘制极坐标康托尔集合的图像,但是那里没有太多变化。今天将使用Mathematica,给出更加多样的图形。还有其他颜色ColorData["CMYKColors"],ColorData["GreenPinkTones"]等都可以进行尝试。这里就不一一展示了。使用Mathematica绘制极坐标康托尔集合。下面是改变圆弧的张口方向以及张口大小的案例。改变圆弧线的排列书序以及排列间隔,可以得到。
2025-05-03 06:00:00
779
原创 在Mathematica中使用MeshPrimitives绘制康托尔集合
使用MeshPrimitives返回1维图像素元即线段之后,然后再把这些素元转化成圆环或者长方形。
2025-05-02 00:10:48
398
原创 在Mathematica中使用RegionProduct绘制康托尔集合
在Mathematica中, 内置了函数RegionProduct。这个函数能用来绘制康托尔集合。这个函数的基本意思是指。也可以改变s的值为1/4和5/12等,来试一下显示效果。
2025-05-01 22:26:52
462
原创 使用Mathematica绘制黑白色的Mandelbrot集合
Mandelbrot集合,是一个很典型的分形案例。前面我们已经介绍很多绘制方法。今天给出一个简单的编程,使用Mathematica。并且将之与Mathematica内置函数做对比。这里使用迭代次数(也就是逃逸世间法)简单编写函数。也可以改变颜色函数,得到。
2025-04-30 20:41:59
219
原创 冯·科赫用一条曲线颠覆人类认知
当2025年的科学家用量子计算机验证科赫猜想时,那个在煤油灯下涂鸦的孤独身影终于露出微笑。瑞典贵族世家的数学神童诞生,祖父是司法大臣,父亲是皇家骑兵中校。发表惊世论文《初等几何构造的无切线连续曲线》,埋下分形革命火种。成为斯德哥尔摩大学纯数学教授,白天授课夜晚绘制"病态曲线"乌普萨拉大学博士毕业,论文揭开"连续与光滑"的百年谜题。科赫曲线登陆元宇宙艺术展,百万观众体验"无限分形VR"✓ 面积温柔收敛:极限仅为初始面积的8/5倍。2️⃣ 中间段向外凸起成新等边三角形。1️⃣ 将等边三角形每边三等分。
2025-04-29 17:44:26
988
原创 Mandelbrot 集合的边界(使用Mathematica)
在Mandelbrot集合中,里面有一圈一圈的曲线。其实这是等高线。在Mandelbrot集合的生成过程中,可以固定迭代次数,观测其在半径为2的圆内的分布状态。
2025-04-29 00:45:00
322
原创 Mandelbrot集合成像的一段Mathematica代码解析
这里,我们解析一段Mathematica代码。主要是使用迭代,Raster函数等来实现Mandelbrot集合的绘制。
2025-04-28 07:38:23
841
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人