虚拟环境
为了避免基本环境的污染,需要在虚拟环境中隔离项目
anaconda虚拟环境命令
(1)检查conda版本
conda --version
(2)获取版本号
conda --version或 conda -V
(3)列出所有的环境
conda env list
conda list命令用于查看conda下的包,而conda env list命令可以用来查看conda创建的所有虚拟环境。
若创建特定python版本的包环境,需键入
conda create -n env-name python=3.6
激活
conda activate env-name
切换到base环境
conda deactivate
复制一个环境(base环境不能直接打包)
conda create -n 新环境的名称 --clone 老环境名称
删除环境
conda remove -n 环境名称 --all
安装pytorch(记住先安装Mamba,否则后面安装其他包的时候很麻烦)
注意查看cuda和python版本在pytorch中找相应版本,当前在虚拟环境中安装的是python=3.8和cuda=11.7版本的1.13版本的pytorch。
conda install pytorch==1.13.0 torchvision==0.14.0 torchaudio==0.13.0 pytorch-cuda=11.7 -c pytorch -c nvidia
详细版本对应关系可以查看这篇博客
pytorch,torchvision与python版本对应关系及安装命令_pytorch python版本-CSDN博客
在Jupyter Lab中使用anaconda的虚拟环境作为kernel
1. 激活虚拟环境并安装ipykernel模块
conda activate your_env_name # 激活虚拟环境
conda install ipykernel # 安装 ipykernel
2. 添加虚拟环境到 Jupyter
python -m ipykernel install --user --name=your_env_name --display-name "Python (your_env_name)"
#以gee环境为例
python -m ipykernel install --user --name=gee --display-name "Python (gee)"
3. 打开Jupyter Lab查看是否成功添加
4. 移除Jupyter Lab中的kernel
#查看配置的所有kernel
jupyter kernelspec list
#移除指定kernel
jupyter kernelspec uninstall kernel-name
(备用)Jupyter Notebook 中切换/使用 conda 虚拟环境
conda activate your_env_name # 刚才建立的虚拟环境
conda install ipykernel
conda deactivate
conda activate base
conda install nb_conda_kernels
#命令行输入jupyter notebook打开jupyter
jupyter notebook
可以看到在base环境中打开的jupyter notebook也能选择切换环境了。
Pycharm运用Anaconda环境
在File->Settings->Project:XX->Python Interpreter 选项中点击+(Add Python Interpreter)新增Anaconda环境就可以了,但是可能选择时显示Conda executable is not found,需要先在你自己下载Anaconda的路径下找到根目录Scripts下的conda.exe,然后点击右侧按钮,就会出来你事先创建的虚拟环境。