虚拟环境创建及在jupyter和pycharm中使用

虚拟环境

为了避免基本环境的污染,需要在虚拟环境中隔离项目

anaconda虚拟环境命令

(1)检查conda版本
conda --version
(2)获取版本号
conda --version或 conda -V
(3)列出所有的环境
conda env list
conda list命令用于查看conda下的包,而conda env list命令可以用来查看conda创建的所有虚拟环境。

若创建特定python版本的包环境,需键入
conda create -n env-name python=3.6
激活
conda activate env-name
切换到base环境
conda deactivate
复制一个环境(base环境不能直接打包)
conda create -n 新环境的名称 --clone 老环境名称
删除环境
conda  remove -n 环境名称 --all

安装pytorch(记住先安装Mamba,否则后面安装其他包的时候很麻烦)

注意查看cuda和python版本在pytorch中找相应版本,当前在虚拟环境中安装的是python=3.8和cuda=11.7版本的1.13版本的pytorch。

conda install pytorch==1.13.0 torchvision==0.14.0 torchaudio==0.13.0 pytorch-cuda=11.7 -c pytorch -c nvidia

详细版本对应关系可以查看这篇博客

pytorch,torchvision与python版本对应关系及安装命令_pytorch python版本-CSDN博客

在Jupyter Lab中使用anaconda的虚拟环境作为kernel

1. 激活虚拟环境并安装ipykernel模块

conda activate your_env_name  # 激活虚拟环境
conda install ipykernel       # 安装 ipykernel

2. 添加虚拟环境到 Jupyter

python -m ipykernel install --user --name=your_env_name --display-name "Python (your_env_name)"
#以gee环境为例
python -m ipykernel install --user --name=gee --display-name "Python (gee)"

3. 打开Jupyter Lab查看是否成功添加

4. 移除Jupyter Lab中的kernel

#查看配置的所有kernel
jupyter kernelspec list
#移除指定kernel
jupyter kernelspec uninstall kernel-name

(备用)Jupyter Notebook 中切换/使用 conda 虚拟环境

conda activate your_env_name    # 刚才建立的虚拟环境
conda install ipykernel
conda deactivate

conda activate base 
conda install nb_conda_kernels
#命令行输入jupyter notebook打开jupyter
jupyter notebook

可以看到在base环境中打开的jupyter notebook也能选择切换环境了。

Pycharm运用Anaconda环境

在File->Settings->Project:XX->Python Interpreter 选项中点击+(Add Python Interpreter)新增Anaconda环境就可以了,但是可能选择时显示Conda executable is not found,需要先在你自己下载Anaconda的路径下找到根目录Scripts下的conda.exe,然后点击右侧按钮,就会出来你事先创建的虚拟环境。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值