【jupyter notebook】环境部署及pycharm连接虚拟机和本地两种方式

Python数据处理分析简介
  • Python作为当下最为流行的编程语言之一
    • 可以独立完成数据分析的各种任务
    • 数据分析领域里有海量开源库
    • 机器学习/深度学习领域最热门的编程语言
    • 在爬虫,Web开发等领域均有应用
  • 与Excel,PowerBI,Tableau等软件比较
    • Excel有百万行数据限制
    • PowerBI ,Tableau在处理大数据的时候速度相对较慢
    • Excel,Power BI 和Tableau 需要付费购买授权
    • Python功能远比Excel,PowerBI,Tableau等软件强大
    • Python跨平台,Windows,MacOS,Linux都可以运行
  • 与R语言比较
    • Python在处理海量数据的时候比R语言效率更高
    • Python的工程化能力更强,R专注于统计与数据分析领域
    • Python在非结构化数据(文本,图像)和深度学习领域比R更有优势
    • 在数据分析相关开源社区,python相关的内容远多于R语言
  • 总结
    1. Python应用广泛, 且是当下最热门的编程语言之一.
    2. Python功能强大, 且开源, 免费.
    3. Python的社区活跃度相对较高.
2.常用Python数据分析开源库介绍
  • NumPy(Numerical Python)
    • 它是 Python 语言的一个扩展程序库。是一个运行速度非常快的数学库.
    • 主要用于数组计算
    • 包含:
      • 一个强大的N维数组对象 ndarray
      • 广播功能函数
      • 整合 C/C++/Fortran 代码的工具
      • 线性代数、傅里叶变换、随机数生成等功能
  • Pandas
    • Pandas是一个强大的分析结构化数据的工具集
    • 它的使用基础是Numpy(提供高性能的矩阵运算)
    • 用于数据挖掘和数据分析,同时也提供数据清洗功能
    • Pandas利器之 Series,是一种类似于一维数组的对象
    • Pandas利器之 DataFrame,是Pandas中的一个表格型的数据结构
  • Matplotlib
    • 它是一个功能强大的数据可视化开源Python库
    • Python中使用最多的图形绘图库
    • 可以创建静态, 动态和交互式的图表
  • Seaborn
    • 它是一个Python数据可视化开源库, 建立在matplotlib之上,并集成了pandas的数据结构
    • Seaborn通过更简洁的API来绘制信息更丰富,更具吸引力的图像
    • 面向数据集的API,与Pandas配合使用起来比直接使用Matplotlib更方便
  • Sklearn
    • scikit-learn 是基于 Python 语言的机器学习工具
    • 简单高效的数据挖掘和数据分析工具
    • 可供大家在各种环境中重复使用
    • 建立在 NumPy ,SciPy 和 matplotlib 上
  • jupyter notebook
    • 它不是开源库, 它是一个开源Web应用程序, 可以创建和共享代码、公式、可视化图表、笔记文档
    • 是数据分析学习和开发的首选开发环境, 作用如下:
      • 数据清理和转换
      • 数值模拟
      • 统计分析
      • 数据可视化
      • 机器学习等
3.Python数据分析环境搭建-本地环境

主要有本地环境虚拟机环境两种, 区别是: 看在哪里安装Anaconda软件.

  • Anaconda介绍

    • Anaconda 是最流行的数据分析平台,全球两千多万人在使用
    • Anaconda 附带了一大批常用数据科学包
    • Anaconda 是在 conda(一个包管理器和环境管理器)上发展出来的
    • 可以帮助你在计算机上安装和管理数据分析相关包
    • 包含了虚拟环境管理工具
  • Anaconda安装

    • Anaconda 可用于多个平台( Windows、Mac OS X 和 Linux)

    • 可以在官网上下载对应平台的安装包

    • 如果计算机上已经安装了 Python,安装不会对你有任何影响

    • 下载链接为: https://www.anaconda.com/products/individual

    • 安装的过程很简单,一路下一步即可

    • 检测是否安装成功

      在这里插入图片描述

  • Anaconda界面介绍

在这里插入图片描述

在这里插入图片描述

  • Anaconda的命令操作

    • 安装包的命令

      # 安装包的命令
      conda install 包名字
      pip install 报名字
      
      
      # 注意,使用pip时最好指定安装源, 参考镜像地址, 
      阿里云:https://mirrors.aliyun.com/pypi/simple/
      豆瓣:https://pypi.douban.com/simple/
      清华大学:https://pypi.tuna.tsinghua.edu.cn/simple/
      中国科学技术大学 http://pypi.mirrors.ustc.edu.cn/simple/
      
      # 完整格式如下
      pip install 包名 -i https://mirrors.aliyun.com/pypi/simple/  #通过阿里云镜像安装
      
    • 操作虚拟环境(沙箱)的命令

      通过命令行创建虚拟环境
      conda create -n 虚拟环境名字 python=python版本  #创建虚拟环境
      conda activate 虚拟环境名字 #进入虚拟环境
      conda deactivate 虚拟环境名字 #退出虚拟环境
      conda remove -n 虚拟环境名字 --all  #删除虚拟环境
      conda env list   # 查看所有虚拟环境(沙箱)
      
  • 管理员的身份打开 Anaconda的命令窗口, 运行jupyter lab 或者 jupyter notebook即可

    在这里插入图片描述

    在这里插入图片描述
    在这里插入图片描述

4.Jupyter Lab初体验
  1. 去Linux虚拟机中, 启动 jupyter环境即可
    在这里插入图片描述

  2. 打开浏览器, 输入上边的网址.

    在这里插入图片描述

5.Jupyter NoteBook初体验
  1. 确保你的C盘hosts文件, 配置了域名映射

    -- 路径为: C:\Windows\System32\drivers\etc\hosts
    
    -- 内容如下:
    192.168.88.161 node1.itcast.cn node1
    
  2. 去Linux虚拟机中, 启动 jupyter环境即可

    在这里插入图片描述

  3. 打开浏览器, 输入上边的网址, 新建1个 numpy文件夹

    在这里插入图片描述

  4. 新建1个test1测试文件.
    在这里插入图片描述

  5. 输入测试代码, 测试执行即可.

    在这里插入图片描述

6.Jupyter NoteBook的使用
  • 菜单栏中相关按钮功能介绍

    Jupyter Notebook的代码的输入框和输出显示的结果都称之为cell,cell行号前的 * ,表示代码正在运行

    在这里插入图片描述

  • 常用快捷键

    Jupyter Notebook中分为两种模式:命令模式和编辑模式

    • 两种模式通用快捷键

      • Shift+Enter,执行本单元代码,并跳转到下一单元
      • Ctrl+Enter,执行本单元代码,留在本单元
    • 按ESC进入命令模式

      在这里插入图片描述

      • Y,cell切换到Code模式
      • M,cell切换到Markdown模式
      • A,在当前cell的上面添加cell
      • B,在当前cell的下面添加cell
      • 双击D:删除当前cell
    • 编辑模式:按Enter进入,或鼠标点击代码编辑框体的输入区域

      在这里插入图片描述

      • 撤销:Ctrl+Z(Mac:CMD+Z)
      • 反撤销: Ctrl + Y(Mac:CMD+Y)
      • 补全代码:变量、方法后跟Tab键
      • 为一行或多行代码添加/取消注释:Ctrl+/(Mac:CMD+/)
      • 代码提示: shift + Tab
  • 使用Markdown

    • 在命令模式中,按M即可进入到Markdown编辑模式

    • 使用Markdown语法可以在代码间穿插格式化的文本作为说明文字或笔记

    • Markdown基本语法:标题和缩进

      • 代码如下:
        在这里插入图片描述

      • 效果图如下

        外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

7.配置PyCharm连接Anaconda
  • 连接本地的Anaconda环境
    在这里插入图片描述

    !在这里插入图片描述

  • 连接本地的Anaconda环境

    • 确保Linux的Jupyter环境开启了
      在这里插入图片描述

    • 配置方式和上述步骤一样,只不过把URL地址换成 http://192.168.88.161:8888

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值