将DeepSeek回答输出为文件格式 - 无需代码

让DeepSeek或者ChatGPT这样的AI来生成内容已经是我们日常生活中的基本操作了,往往需要我们手动把内容复制到文本中,那么有没有办法能够直接把AI的回答自动放到我们需要的文件格式里呢?

当然可以,即使你不会写代码。下面就提供了一个示例,在低代码平台将DeepSeek (因为它有用且便宜)和PDF文件生成工具结合起来形成自动化流程。

DeepSeek提供一个文件提取功能,但是目前使用起来不太稳定。下面是一些可以替代的工具:

什么是DeepSeek?

DeepSeek是一个强大的工具,帮助您从PDF、Word文件以及扫描图像等文档中搜索、提取和分析信息。凭借其强大的搜索和数据提取功能,DeepSeek能够快速在大型数据集中找到特定的答案、模式或内容。

然而,DeepSeek的真正强大之处在于它与像Make这样的工具结合使用 — — Make是一个可以帮助您自动化工作流并连接各种应用程序的平台,无需编写任何代码。

所需的工具:

  1. DeepSeek账户:为了通过Make访问DeepSeek的功能,您需要在DeepSeek平台注册账户并获取API访问权限。
  2. Make账户:在iPaaS Make平台上注册账户,以创建自动化工作流。
  3. 文件生成工具:Make提供了内置模块,用于生成如Google Sheets、Excel、CSV和PDF等文件,这些文件可以用来存储DeepSeek提取的数据。

第一步:访问Make并连接DeepSeek

注册/登录到Make

  • 访问Make网站并登录或创建一个新账户。

创建新工作流

  • 在Make中创建一个新工作流(Scenario)。这是您将设计自动化过程的地方。

将DeepSeek添加到工作流

  • 在Make平台上,点击“添加模块”并搜索DeepSeek。
  • 通过输入所需的API密钥和其他认证信息来连接您的DeepSeek账户。
  • 连接成功后,您就可以在工作流中使用DeepSeek的搜索和提取功能了。

第二步:配置DeepSeek的搜索功能

定义搜索参数

  • 在DeepSeek模块中,指定您的搜索参数。例如,将答案以表格的格式进行输出。
  • 您还可以设置过滤器,专注于文档的特定部分,以帮助精确找到您想要转换成文件的数据。

第三步:将DeepSeek与Make中的文件生成器连接

选择文件生成模块

  • 配置好DeepSeek的提取功能后,您需要选择Make中的文件生成模块来生成您想要的文件格式,这里使用Google Sheet作为示范。

设置文件生成器

  • 例如,如果您使用Google Sheets,选择“创建电子表格行”模块。将DeepSeek输出的字段映射到电子表格中的列。
  • 如果使用Excel,选择适当的Excel文件创建模块,并将提取的数据映射到单元格中。

测试集成

  • 运行测试以检查数据是否从DeepSeek正确提取并放入您选择的文件格式中。您可以选择一个文章主题,让DeepSeek书写出大纲,以表格的形式输出,并查看答案是否按照预设的那样被写入表格中。

第四步:自动化工作流

添加更多步骤(可选)

  • 您可以添加更多的文件生成器将DeepSeek答案转为更多的文件格式。常见选项包括:

Google Sheets

Word

PPT

PDF(如果您需要格式化文档)

第五步:保存并运行工作流

激活工作流

  • 配置完成后,点击“运行”以激活工作流。
  • 从此以后,系统将自动从DeepSeek中的答案生成你需要的文件格式,无需手动处理。

总结

DeepSeek已经能够在iPaaS平台Make中访问并与其他app进行结合使用,完全不需要编写代码。按照本教程的步骤,您可以设置一个属于自己的自动化工作流,从而提升工作效率。

### Janus-Pro 本地部署教程和配置指南 #### 一、环境准备 为了成功部署Janus-Pro-7B,需先准备好合适的硬件与软件环境。该模型支持多种计算资源,包括但不限于CPU和GPU。对于更高效的性能体验,建议使用配备有高性能显卡的设备。 安装必要的依赖库是启动项目前的重要一步。通常情况下,这涉及到Python解释器及其开发包、PyTorch框架以及其他辅助工具或库文件。通过Docker容器化技术可以简化这一流程并提高跨平台兼容性[^1]。 #### 二、获取预训练模型权重 访问官方提供的链接下载预先训练好的Janus-7B参数文件。这些权重经过精心调优,在多个公开数据集上取得了优异的成绩。确保遵循官方网站上的指导说明来完成此操作。 #### 三、设置运行环境 创建一个新的虚拟环境用于隔离不同项目的依赖关系,并激活之: ```bash python3 -m venv janus-pro-env source ./janus-pro-env/bin/activate ``` 接着按照文档指示安装所需的Python包。如果采用的是基于Docker的方式,则可以直接拉取镜像而无需单独构建整个环境: ```bash docker pull deepseek/janus-pro:latest ``` #### 四、加载与测试模型 当一切就绪之后,就可以尝试加载刚刚获得的模型实例了。下面给出了一段简单的代码片段作为参考,展示了如何利用transformers库快速初始化一个推理引擎: ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("deepseek/janus-pro-7b") model = AutoModelForCausalLM.from_pretrained("deepseek/janus-pro-7b") input_text = "你好" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` 以上步骤完成后应该能够在终端看到由Janus-Pro生成的回答输出。当然实际应用中还需要考虑更多细节问题比如优化内存占用率以及提升响应速度等方面的工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值