数学——排列组合总结和归纳

!!!!先声明,下文Ax y表示(组合的表示方式同理)!!!!

 一、直接应用加法或者乘法原理

1.A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的右边,那么不同的排法种数有()

解答:AB相邻,即把AB看作一个人。这个时候乘法原理A4 4计算4个人的全排列有24种,然而AB两人不可以互换顺序,所以最后答案为24种。

二、应用容斥原理

简单来讲就是先不管题目要求算出总的可能再减去非法的可能数和加上重复减去的可能。

1.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()
答案:3600

2.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(A,B可以不相邻)那么不同的排法种数是()

答案:60

先计算5人的全排列A5 5=120,然后减去B站在A的左边的可能。然而在所有的可能中,B不是站在A的左边就一定是站在A的右边,仅有这两种情况。于是我们直接除以2=60

 3.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?

答案:4088

解析:先计算所有可能:A10 4=5040种。再减去甲同学到银川和乙到西宁的情况,即两个A9 3=1008,最后再加上同时甲同学到银川和乙到西宁的情况(因为计算甲到银川时已经计算了乙到西宁的情况)加上A8 2,得出答案为4088.

4.由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有()

答案:300

总共-首位是0,十位>或<各位的数量是相等的。(A6 6-A5 5)*0.5=300;

5.1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种?

答案:72

解析:先算全部A5 5,减去老师站在两端的情况,即减去2个A4 4.这回不用加上,为什么呢?因为老师不可能同时站在左边和右边

三、错排问题

这类问题有递推和数学两种公式。其中递推公式考虑以下两种情况:(设D(n)为元素为n时的错排方案数)

一、A被放在了第k个位置上

这个时候已经确定A不在自己原来的位置上,于是问题转变为求n-1个错排方案数的问题,即D(n-1)

二、A被放在了第k个位置上,同时第k个位置的数刚好被放回到了A的位置

这个时候已经确定了两个元素的错排,问题转变为求D(n-2)时的方案数

最后,对于每一种选择(就是选哪个数来考虑),我们都有D(n-1)+D(n-2)种错排方式。同时,选的数又有n-1种可能。于是我们得出结论:

D(n)=(n-1)\cdot [(D(n-2)+D(n-1))]

1.(错排)将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有()

于是,我们很容易根据公式得出答案为9.

四、分组

1.4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?

答案:36

解析:由题意得至少有两个人在同一所学校。同时,四个人的组合方式只能为(2,1,1)于是,我们先考虑从4个人中选2个人出来的情况:C4 2=6.然后,我们再考虑把剩下的人分到3个学校的可能:A3 3=6.根据乘法原理得到总的方案数为6*6=36种

五、可能性

把6名实习生分配到7个车间实习共有多少种不同方法?

答案:117694

解析:每个实习生之间不会有互相的影响(因为没说一个车间只能去一个人或者有人数限制,有这个条件,那么实习生之间就会互相影响)。即A去了第一个车间不影响B怎么走。于是对于每个实习生都有7种选择。应用乘法原理得到答案

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值