!!!!先声明,下文Ax y表示(组合的表示方式同理)!!!!
一、直接应用加法或者乘法原理
1.A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的右边,那么不同的排法种数有()
解答:AB相邻,即把AB看作一个人。这个时候乘法原理A4 4计算4个人的全排列有24种,然而AB两人不可以互换顺序,所以最后答案为24种。
二、应用容斥原理
简单来讲就是先不管题目要求,算出总的可能再减去非法的可能数和加上重复减去的可能。
1.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()
答案:3600
2.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(A,B可以不相邻)那么不同的排法种数是()
答案:60
先计算5人的全排列A5 5=120,然后减去B站在A的左边的可能。然而在所有的可能中,B不是站在A的左边就一定是站在A的右边,仅有这两种情况。于是我们直接除以2=60
3.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?
答案:4088
解析:先计算所有可能:A10 4=5040种。再减去甲同学到银川和乙到西宁的情况,即两个A9 3=1008,最后再加上同时甲同学到银川和乙到西宁的情况(因为计算甲到银川时已经计算了乙到西宁的情况)加上A8 2,得出答案为4088.
4.由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有()
答案:300
总共-首位是0,十位>或<各位的数量是相等的。(A6 6-A5 5)*0.5=300;
5.1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种?
答案:72
解析:先算全部A5 5,减去老师站在两端的情况,即减去2个A4 4.这回不用加上,为什么呢?因为老师不可能同时站在左边和右边
三、错排问题
这类问题有递推和数学两种公式。其中递推公式考虑以下两种情况:(设D(n)为元素为n时的错排方案数)
一、A被放在了第k个位置上
这个时候已经确定A不在自己原来的位置上,于是问题转变为求n-1个错排方案数的问题,即D(n-1)
二、A被放在了第k个位置上,同时第k个位置的数刚好被放回到了A的位置
这个时候已经确定了两个元素的错排,问题转变为求D(n-2)时的方案数
最后,对于每一种选择(就是选哪个数来考虑),我们都有D(n-1)+D(n-2)种错排方式。同时,选的数又有n-1种可能。于是我们得出结论:
1.(错排)将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有()
于是,我们很容易根据公式得出答案为9.
四、分组
1.4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?
答案:36
解析:由题意得至少有两个人在同一所学校。同时,四个人的组合方式只能为(2,1,1)于是,我们先考虑从4个人中选2个人出来的情况:C4 2=6.然后,我们再考虑把剩下的人分到3个学校的可能:A3 3=6.根据乘法原理得到总的方案数为6*6=36种
五、可能性
把6名实习生分配到7个车间实习共有多少种不同方法?
答案:117694
解析:每个实习生之间不会有互相的影响(因为没说一个车间只能去一个人或者有人数限制,有这个条件,那么实习生之间就会互相影响)。即A去了第一个车间不影响B怎么走。于是对于每个实习生都有7种选择。应用乘法原理得到答案。