Something about Transformer

在使用Transformer进行目标跟踪时,mask可以这样利用:
  1. 将mask作为额外的输入信号,把目标框区域和背景区域的特征进行拼接,然后输入到Transformer中。

  2. 在Transformer的self-attention模块中,通过mask将目标区域的特征进行聚合,背景区域进行抑制,增强对目标的关注。

  3. 在Transformer编码器的输出上,添加一个mask预测分支,与框坐标预测分支并行,用于预测目标的segmentation mask。

  4. mask分支可以是一个简单的几层卷积网络,逐步上采样还原到输入图像大小,预测每个像素的目标概率。

  5. 也可以使用类似MaskFormer的结构,将Transformer编码器的输出经过Transformers decoder进一步精炼,然后预测mask。

  6. 利用mask分支的预测结果作为训练目标跟踪Transformer的辅助监督信号。

  7. 同时预测框坐标和mask,框坐标定位目标整体,mask精确提取目标边界。二者相互制约,提高鲁棒性。

  8. 在推理时,可以只使用框坐标进行跟踪,也可以结合mask进行细化,遮挡处理等。

在目标跟踪任务中,目标的遮挡mask可以通过以下几种方式获取:
  1. 人工标注 最精确的方法是人工逐帧标注目标的mask,但是成本非常高。通常只会在部分数据集的部分序列进行标注。

  2. 基于目标框的生成 可以根据目标框来生成一个粗糙的mask,例如框内填充正样本,框外填充负样本。简单快速但不够精确。

  3. 基于语义分割的生成 使用预训练好的语义分割模型,检测每个像素属于哪一类,然后根据目标的类别生成mask。质量依赖于分割模型。

  4. 运动分割 通过前后帧的运动信息,提取出移动的目标区域,进行聚类生成mask。质量不高,无法处理遮挡。

  5. 预测掩码的生成 训练一个掩码预测分支网络,让它在跟踪过程中预测目标的mask。可以自动学习mask信息。

  6. 跟踪时的online生成 在跟踪框架内部,增加mask预测模块,同时进行跟踪框预测和掩码生成。online更新mask。

  7. 跟踪结果的后处理 获得跟踪框坐标后,使用后处理算法优化mask,如马尔可夫随机场等。 综上,理想的mask应该结合多个方式,在线生成与优化,既考虑精度又考虑速度,融入跟踪框架。

根据之前给出的基于Vision Transformer的目标跟踪网络结构,其中使用掩码(mask)的生成方式可以分析如下:
  1. 该网络是一个单目标跟踪框架,所以mask是针对单个跟踪目标生成的。

  2. 网络使用Transformer encoder作为backbone,输出特征图作为heads的输入。

  3. heads包含框坐标预测分支和mask预测分支。

  4. mask分支可以是一个简单的上采样网络,例如几层反卷积或者像MaskFormer一样使用decoder。

  5. 该框架属于在线跟踪,所以mask应该是在跟踪过程中动态生成的。

  6. 每次输入一帧图像,backbone输出特征, heads同时预测目标框和mask。

  7. mask这里可以Initialized from the predicted box coordinates using some simple method.

  8. 然后mask在后续跟踪过程中,被头部网络不断更新和优化,实现在线预测。

  9. mask预测作为辅助监督信号,强化网络学习目标 Representation。

  10. 该框架使用在线生成和更新mask,既考虑速度,也提升网络特征表达能力。 综上,这种基于Transformer编码器的跟踪器,可以采用在线预测和更新掩码的方式,来提供额外的监督信号,增强网络跟踪鲁棒性。

在基于Vision Transformer的目标跟踪框架中,IOUnet是一个用于精确目标定位的模块,主要作用是:
  1. IOUnet通常被加入到预测头(heads)模块中。

  2. 它以检测框的坐标(x,y,w,h)为输入,预测输出这个框与真值框的IoU。

  3. IoU表示框的重合程度,范围在0到1之间,值越大表示预测越准确。

  4. IOUnet包含一个小的多层全连接网络,输入是框坐标,输出是一个标量的IoU值。

  5. IOUnet在训练时以真值IoU作为监督,学习预测IoU。

  6. 在推理时,IOUnet可以评估每个预测框的质量,提供一定的置信度。

  7. 跟踪框架可以根据IOUnet的输出对框进行筛选,删除IoU较低的框。

  8. 这样可以过滤掉一些低质量的跟踪框,提高框预测的精度。

  9. IOUnet为跟踪框架增加了一个精度评价模块,可以发现一些漏检或误检的框。 综上所述,IOUnet是目标跟踪中常用的检测框质量评估模块,可有效提升基于Transformer的跟踪器定位精度。

在图像预处理中训练IOUnet的主要方法有:
  1. 构造训练集 构造一组输入图像和对应的真值标注框(ground truth boxes)。真值框可以由人工标注或其他方法获得。

  2. 数据增强 对训练集图像进行常用的数据增强操作,如裁剪、旋转、缩放、颜色变化等。增强对各种情况的适应性。

  3. 得到预测框 使用目标检测等方法对增强后的图像进行预测,得到一系列预测框。

  4. 计算IoU 计算每个预测框与对应的真值框的IoU,作为回归目标。

  5. 训练IOUnet 输入为预测框的坐标,输出回归到对应的IoU值。使用MSE、SmoothL1等损失函数。

  6. 优化IOUnet 调整网络结构,优化损失函数,提高预测IoU的能力。

  7. 应用 在图像处理流程中,使用IOUnet评估检测框质量,进行过滤等增强后处理,提升模型鲁棒性。

  8. 微调 可以在整个检测或跟踪模型中,将IOUnet作为子模块终端微调,提升其适应目标任务的能力。 综上,构建高质量训框数据集并与目标任务对齐是IOUnet训练的关键,它可以用于各种图像预处理与框操作的后处理增强。

  1. 目标框抖动可以获得更多样化的框,计算抖动后框和真值框的IoU作为IOUnet的训练目标。

  2. 感兴趣区域裁剪保留目标,可以减少背景对IOU计算的干扰。

  3. 数据增强能让网络接触更多变化,对提升IOUnet泛化能力很有帮助。

  4. 真值掩码精确标注目标区域,可以用于计算精细化的IoU,提供更好的回归目标。

  5. 这些操作都能提供更丰富的图像框数据,计算更准确的IoU作为监督信号,有利于IOUnet的训练。

  6. 预处理的图像经检测器预测,然后计算IoU训练IOUnet,形成了一个闭环。

  7. 数据增强策略要考虑检测器的适应能力,保证预测框质量。

  8. 经过同样的图像处理,IOUnet可以更适应检测器的特点。

  1. 目标框抖动:这一步只是对真值框做抖动,获得新的训练样本,与IOUnet无关。

  2. 感兴趣区域裁剪:这一步也仅仅是获取ROI区域,还没有用到IOUnet。

  3. 数据增强:对图像做变换,还是在数据准备阶段,未用到IOUnet。

  4. 计算掩码:根据真值框标注掩码,同样是在增强训练数据,不是用IOUnet。

  5. 以上步骤得到增强后的数据集,但都还是准备数据的过程。

  6. 如果要用IOUnet,那么需要后续的步骤: (1) 使用目标检测模型预测这些增强后的数据,得到一系列预测框。 (2) 计算预测框与真值框的IoU作为回归目标。 (3) 将预测框坐标作为输入,IoU作为标签,来训练IOUnet模型。

  7. 所以这些数据增强和预处理步骤是为使用IOUnet做准备,但都还未实际使用IOUnet。

  8. IOUnet的使用需要基于检测器预测结果计算IoU,进行回归模型的训练。 综上,我重新理解了你的问题,目前这些步骤中还未涉及到IOUnet的实际使用。

vision Transformer

假设我们有一张图片,分辨率是256x256像素。我们可以将这张图片分割成16x16像素的小patch,一共256/16 = 16行,每行16个patch,那么总共会得到16x16=256个patch。 然后,对每一个16x16的patch,我们用一个全连接层(fc layer)来学习得到一个较低维的特征向量,比如长度是128的向量。

全连接层中的权重矩阵本质上是一个线性映射转换。具体来说:

  1. 假设输入层有256个神经元,输出层有128个神经元。

  2. 那么全连接层的权重矩阵大小是 128 x 256。

  3. 对输入层的256维输入向量做矩阵乘法,得到128维输出。

  4. 权重矩阵的数学属性决定了线性映射的转换方式。

  5. 通过训练,权重矩阵elements会逐渐调整,学习出合适的映射关系。

  6. 最终实现 256 维 patching 映射到 128 维特征表达。 所以全连接层依靠可训练的权重矩阵,实现高维到低维的线性映射转换。训练使权重矩阵逐步逼近最优映射。

flatten操作只是从概念上方便我们理解全连接层的工作原理,在实际的计算机运算中是没有显式执行flatten这一步骤的。全连接层接受输入并计算权重矩阵乘以输入加偏置的输出。输入可以是任意形状的多维数据,计算机会自动把输入展开成一个一维向量然后进行矩阵乘法运算。也就是说,计算机直接把多维输入数据按行或列顺序展开成一个一维向量,与矩阵乘法的权重矩阵进行运算。这个展开的过程对计算机来说是自动的,我们不需要专门写代码去执行flatten。所以flatten只是从概念上更容易理解全连接层的工作原理 - 把多维输入展平成一维,再进行矩阵乘法。但实际计算中计算机会自动完成这个过程,不需要我们专门实现flatten。总结一下,flatten不是全连接层运算的一个实际步骤,只是从逻辑上理解其工作原理的一个抽象过程。计算机会自动把多维输入展开来运算,不需要我们自己flatten。

在Vision Transformer中,全连接层权重矩阵的初始化通常有以下几种方法:
  1. Xavier初始化:这是一种较常用的初始化方法,可以保持不同层间信息的流动,防止梯度消失或爆炸。

  2. Kaiming初始化:这是针对ReLU激活函数的初始化方式,可以良好地保持梯度的方差。

  3. 标准正态分布初始化:即用均值为0,标准差为1的正态分布采样初始化权重。

  4. 均匀分布初始化:从均匀分布中采样初始化权重矩阵的值。

  5. 预训练模型初始化:使用在大数据集上预训练的模型来初始化权重,这可以利用预训练的知识。

  6. 特定方差初始化:根据理论分析,将权重矩阵初始化为某特定的方差。

这样对所有256个patch都做同样的处理,我们就得到了256个128维的向量。 将这256个128维向量concatenate起来,就是一个256x128的矩阵,可以看作是这个图片的一个线性嵌入表示(linear embedding)。

在Vision Transformer中:
  • 每个16x16的图像patch经过线性映射得到的128维特征向量,就相当于NLP中的一个词的词向量表示。

  • 将256个patch的128维特征向量拼接起来,形成一个256x128的矩阵,就相当于一个句子中包含256个词的表示。

  • 这样的矩阵作为输入,送入后续的Transformer编码器中,实现对整张图像的建模,就如同NLP中的Transformer对一个句子进行建模一样。 所以可以把图像分patch并线性映射到低维空间的操作,Analogous到NLP中将一个句子分割成多个词。而影像作为特殊的“句子”,词就是图像patch的向量表示。

这个线性嵌入作为输入,传给后面的Transformer模型。Transformer中的self-attention机制可以建模patch之间的全局关系,实现对整个图片的理解。 这样一来,通过将图片分patch并线性映射,我们就把二维图像转变为Transformer可以处理的一维序列形式。这种处理方式充分利用了Transformer在建模全局依赖关系上的优势,为视觉任务带来新的可能性。

Transformer中的Encoder模块主要实现了以下几点功能:
  1. 多头注意力机制(Multi-Head Attention):这是Transformer的核心机制,通过计算输入的不同表示之间的相关性,来捕捉输入序列的全局依赖关系。

  2. 前馈全连接网络(Feed Forward Network):用于非线性映射,以增强模型的表达能力。

  3. 残差连接(Residual Connection):输入直接跨过一层进行连接,以缓解深层网络的梯度消失问题。

  4. Layer Normalization:对每一层的特征进行规范化,使模型更稳定易训练。

Transformer Encoder的工作流程是:
  1. 将输入序列(如词向量序列)在每个位置增加Position Encoding,为模型提供序列顺序信息。

    位置编码是加上去的(sum),不是拼接上去的。

  2. 输入序列经过多头注意力机制,获得序列的上下文表示。

  3. 通过前馈全连接网络进行非线性映射。

  4. 应用残差连接,将注意力表示和非线性映射结果相加。

  5. Layer Normalization对相加的结果进行规范化。

  6. 重复上述步骤多次构建深层网络。 这样通过交替使用注意力机制和全连接网络,Transformer Encoder可以对序列进行深层语义抽取和建模。

  1. Vision Transformer将图像分割为多个patch,对每个patch提取特征。

  2. 利用类似NLP的Position Encoding给图像patch编码位置信息。

  3. 将patch的特征向量作为序列输入到Transformer Encoder中。

  4. 在Transformer Encoder内,多头自注意力机制会聚焦在不同的patch上,学习patch之间的关系。

  5. 前馈全连接网络对patch的特征作进一步转换。

  6. Layer Normalization和残差连接用来稳定训练。

  7. 重复这些模块堆叠多层,输出图像patch的上下文特征。

  8. 最后的分类头对输出特征进行分类预测。

Vision Transformer中的MLP(多层感知机)主要用来进行特征变换。 Vision Transformer中的结构通常是:输入图像Patch --> 经过多头自注意力模块(Multi-head Self-Attention)得到特征图 --> MLP特征变换。 MLP部分通常包含两个线性变换层和一个非线性激活函数:

  1. 第一个线性变换层:用于将输入特征映射到一个较高维的空间,通常映射维度是输入的4倍,这样可以提取更多特征。

  2. 非线性激活函数:通常使用GELU或者ReLU,引入非线性,增强模型的表达能力。

  3. 第二个线性变换层:再将维度映射回原来的大小,也就是降维到与输入相同的维度。

MLP结构强大之处在于它连接了两个线性变换,通过非线性激活函数作为中间层,可学习非线性交互,增强了模型特征提取和表示的能力。 整体来说,MLP用于增强Vision Transformer提取的特征表达,引入非线性交互,是Vision Transformer结构中非常关键的一个组成部分。它增强了模型对视觉特征的表示和变换能力。

Vision Transformer模型微调主要分以下几个步骤:
  1. 加载预训练模型:从模型仓库中下载在大数据集上预训练好的Vision Transformer模型,加载预训练的参数。

  2. 设置微调训练参数:需要确定哪些层参与微调,哪些层保持固定。一般会固定卷积层和前面的Transformer块,解冻分类头和最后1-2个Transformer块。

  3. 更换分类头:修改分类层的网络结构,使其输出个数与自己的数据集类别数匹配。可以初始化新的分类头或者加载已有模型的分类头权重。

  4. 数据处理:需要对自己的数据集进行与预训练数据集类似的预处理,如图像增强、裁剪、标准化等。

  5. 开始微调训练:使用较小的学习率(如0.001%),在新的分类任务上进行迭代训练。通常仅需训练几轮就可以取得很好的效果。

  6. 优化器可以使用低动量的SGD或者Adam等。Loss函数可以使用交叉熵损失。

  7. 可以适当使用一定概率的dropout或者weight decay来避免过拟合。

  8. 如果效果不佳,可以逐步解冻更多层进行微调,或调整学习率、优化器等。

  9. 微调后得到适配自己数据集的Vision Transformer模型,可以保存模型并用于测试或部署。

通过以上微调策略,可以快速高效地迁移Vision Transformer模型到新任务上,达到很强的模型效果。

原始的Vision Transformer 在论文中确实没有卷积层,直接从图像patch输入到Transformer结构。 但在后续的研究和应用中,许多模型会在Vision Transformer中引入卷积层,以 capture 更低层的图像信息。主要有以下两类:

  1. 混合模型:如 ViT-ResNet,会在Transformer之前加入少量卷积层提取底层特征,融合卷积网络的优势。

  2. 作为Patch Extractor: 一些模型会使用卷积网络作为patch特征提取器,从图像中提取patch特征然后输入到Transformer。例如DeiT中使用的ConvStem。

  3. 提高小样本学习:加入少量卷积层可帮助Transformer在小样本任务上表现提升。

  4. 参数效率:适当加入卷积层可以减少Transformer块数量,提高参数利用效率。

所以综合来说,虽然原始论文的Vision Transformer没有卷积层,但在实际使用中加入一定数量的卷积层作为补充,可以给模型带来性能或参数效率上的提升。需要根据具体使用场景来设计。

Python网络爬虫与推荐算法新闻推荐平台:网络爬虫:通过Python实现新浪新闻的爬取,可爬取新闻页面上的标题、文本、图片、视频链接(保留排版) 推荐算法:权重衰减+标签推荐+区域推荐+热点推荐.zip项目工程资源经过严格测试可直接运行成功且功能正常的情况才上传,可轻松复刻,拿到资料包后可轻松复现出一样的项目,本人系统开发经验充足(全领域),有任何使用问题欢迎随时与我联系,我会及时为您解惑,提供帮助。 【资源内容】:包含完整源码+工程文件+说明(如有)等。答辩评审平均分达到96分,放心下载使用!可轻松复现,设计报告也可借鉴此项目,该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的。 【提供帮助】:有任何使用问题欢迎随时与我联系,我会及时解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 下载后请首先打开README文件(如有),项目工程可直接复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值