英国城市经济社会分析
项目概述
本项目旨在分析英国城市在疫情前后(2017-2023年)的经济社会指标变化,包括周薪、就业率、福利支出、房价等多维度指标,揭示疫情对不同规模城市的差异化影响。
数据说明
数据文件为Data.csv
,包含以下字段:
- City:城市名称
- Year:年份(2017-2023)
- Weekly_Wages:周薪
- Employment_Rate:就业率
- Population:人口数量
- Welfare_Spending:福利支出
- Educational_Attainment_GCSE:GCSE教育水平
- Business_start_ups:新创企业数量
- House_prices:房价
- Housing_affordability_ratio:住房负担比率
分析方法
项目使用R语言进行数据分析,主要包括以下五个方面:
-
相关性分析:使用皮尔逊相关系数计算经济社会指标间的相关性,比较疫情前后相关性的变化。
- 公式:r = cov(X,Y) / (sd(X) * sd(Y))
-
分组比较:基于城市规模(大城市/中小城市)和时期(疫情前/疫情后)进行分组,对比各组别的经济社会指标。
- 均值计算:mean(x) = sum(x) / n
- 变化率计算:变化率 = (疫情后值 - 疫情前值) / 疫情前值 * 100%
-
回归分析:构建线性回归模型,分析疫情因素对周薪和福利支出的影响。
- 模型:y = β₀ + β₁x₁ + β₂x₂ + … + βₙxₙ + ε
- 评估指标:R²、p值、系数显著性
-
不平等指标:计算疫情前后不同城市规模的基尼系数,衡量收入分配和福利支出的不平等程度。
- 基尼系数计算:G = (∑ᵢ∑ⱼ|xᵢ - xⱼ|) / (2n²μ)
-
差异比较:通过t检验分析疫情前后不同城市规模的指标差异是否显著。
- t统计量:t = (x̄₁ - x̄₂) / sqrt(s₁²/n₁ + s₂²/n₂)
- 显著性判断:p < 0.05
项目结构
英国城市经济社会分析/
├── Data.csv # 数据文件
├── 英国城市经济社会分析.R # R分析脚本
├── 项目开发说明.md # 项目说明文档
└── 结果/ # 分析结果输出目录
├── 疫情前相关性分析.csv
├── 疫情后相关性分析.csv
├── 分组统计结果.csv
├── 变化率统计.csv
├── 周薪回归模型摘要.txt
├── 福利支出回归模型摘要.txt
├── 周薪回归系数.csv
├── 福利支出回归系数.csv
├── 基尼系数分析.csv
├── t检验结果.csv
└── 分析总结.txt
使用说明
Mac系统
-
安装R(4.4.2或更高版本):
- 从R官网下载并安装R
- 或使用Homebrew:
brew install --cask r
-
安装必要的R包:
install.packages(c("tidyverse", "ineq"), repos = "https://cloud.r-project.org/")
-
运行分析脚本:
- 打开终端,进入项目目录
- 执行命令:
Rscript 英国城市经济社会分析.R
- 或在RStudio中打开脚本并运行
Windows系统
-
安装R(4.4.2或更高版本):
-
安装必要的R包:
install.packages(c("tidyverse", "ineq"), repos = "https://cran.rstudio.com/")
-
运行分析脚本:
- 在RStudio中打开脚本并运行
- 或使用命令行:
"C:\Program Files\R\R-4.4.2\bin\Rscript.exe" 英国城市经济社会分析.R
结果解读
分析结果保存在结果
目录下,包括:
- 相关性矩阵:展示各指标间的相关关系
- 分组统计表:展示不同城市规模和时期的指标均值
- 变化率表:反映疫情前后的指标变化幅度
- 回归分析结果:揭示影响周薪和福利支出的关键因素
- 基尼系数:衡量收入和福利支出的不平等程度
- t检验结果:验证差异的统计显著性
- 分析总结:整体研究发现的文本总结