英国城市经济社会分析

英国城市经济社会分析

项目概述

本项目旨在分析英国城市在疫情前后(2017-2023年)的经济社会指标变化,包括周薪、就业率、福利支出、房价等多维度指标,揭示疫情对不同规模城市的差异化影响。

数据说明

数据文件为Data.csv,包含以下字段:

  • City:城市名称
  • Year:年份(2017-2023)
  • Weekly_Wages:周薪
  • Employment_Rate:就业率
  • Population:人口数量
  • Welfare_Spending:福利支出
  • Educational_Attainment_GCSE:GCSE教育水平
  • Business_start_ups:新创企业数量
  • House_prices:房价
  • Housing_affordability_ratio:住房负担比率

分析方法

项目使用R语言进行数据分析,主要包括以下五个方面:

  1. 相关性分析:使用皮尔逊相关系数计算经济社会指标间的相关性,比较疫情前后相关性的变化。

    • 公式:r = cov(X,Y) / (sd(X) * sd(Y))
  2. 分组比较:基于城市规模(大城市/中小城市)和时期(疫情前/疫情后)进行分组,对比各组别的经济社会指标。

    • 均值计算:mean(x) = sum(x) / n
    • 变化率计算:变化率 = (疫情后值 - 疫情前值) / 疫情前值 * 100%
  3. 回归分析:构建线性回归模型,分析疫情因素对周薪和福利支出的影响。

    • 模型:y = β₀ + β₁x₁ + β₂x₂ + … + βₙxₙ + ε
    • 评估指标:R²、p值、系数显著性
  4. 不平等指标:计算疫情前后不同城市规模的基尼系数,衡量收入分配和福利支出的不平等程度。

    • 基尼系数计算:G = (∑ᵢ∑ⱼ|xᵢ - xⱼ|) / (2n²μ)
  5. 差异比较:通过t检验分析疫情前后不同城市规模的指标差异是否显著。

    • t统计量:t = (x̄₁ - x̄₂) / sqrt(s₁²/n₁ + s₂²/n₂)
    • 显著性判断:p < 0.05

项目结构

英国城市经济社会分析/
├── Data.csv                 # 数据文件
├── 英国城市经济社会分析.R    # R分析脚本
├── 项目开发说明.md           # 项目说明文档
└── 结果/                    # 分析结果输出目录
    ├── 疫情前相关性分析.csv
    ├── 疫情后相关性分析.csv
    ├── 分组统计结果.csv
    ├── 变化率统计.csv
    ├── 周薪回归模型摘要.txt
    ├── 福利支出回归模型摘要.txt
    ├── 周薪回归系数.csv
    ├── 福利支出回归系数.csv
    ├── 基尼系数分析.csv
    ├── t检验结果.csv
    └── 分析总结.txt

使用说明

Mac系统

  1. 安装R(4.4.2或更高版本):

    • R官网下载并安装R
    • 或使用Homebrew:brew install --cask r
  2. 安装必要的R包:

    install.packages(c("tidyverse", "ineq"), repos = "https://cloud.r-project.org/")
    
  3. 运行分析脚本:

    • 打开终端,进入项目目录
    • 执行命令:Rscript 英国城市经济社会分析.R
    • 或在RStudio中打开脚本并运行

Windows系统

  1. 安装R(4.4.2或更高版本):

  2. 安装必要的R包:

    install.packages(c("tidyverse", "ineq"), repos = "https://cran.rstudio.com/")
    
  3. 运行分析脚本:

    • 在RStudio中打开脚本并运行
    • 或使用命令行:"C:\Program Files\R\R-4.4.2\bin\Rscript.exe" 英国城市经济社会分析.R

结果解读

分析结果保存在结果目录下,包括:

  • 相关性矩阵:展示各指标间的相关关系
  • 分组统计表:展示不同城市规模和时期的指标均值
  • 变化率表:反映疫情前后的指标变化幅度
  • 回归分析结果:揭示影响周薪和福利支出的关键因素
  • 基尼系数:衡量收入和福利支出的不平等程度
  • t检验结果:验证差异的统计显著性
  • 分析总结:整体研究发现的文本总结

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值