洛谷P1387 最大正方形【枚举、二维前缀和】

题目:P1387 最大正方形 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

本题可以枚举二维矩阵的每个点作为正方形的左上角顶点,然后枚举正方形的所有可能边长,然后检查该正方形内是否存在0。

如果检查的过程我们用暴力枚举的方法,检查过程复杂度将会是

   O\left ( k^{^{2}} \right )

其中k是我们枚举的正方形边长

那么这样的纯暴力法时间复杂度就是

O\left ( n^{5} \right )

题目中n最大为100,故上述方法必然会超时;

此时,我们需要对检查过程进行优化,如何快速查询一个静态二维数组的区间0的个数呢?我们将0的位置看作1,其他的数字看成0,这样区间0的个数也就转化为二维区间和的问题了!

所以我们提前利用二维前缀和维护0的个数即可,最后检查部分也就是O(1)的时间复杂度了!

所以最后本题复杂度也就被我们优化为了

O\left ( n^{3} \right )

#include <bits/stdc++.h>
using namespace std;
#define endl "\n"
#define x first
#define y second
typedef pair<long long, long long> PLL;
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
typedef unsigned long long ull;
typedef long long ll;
const int N = 100 + 10, inf = 0x3f3f3f3f;
int pre[N][N], a[N][N];
int n, m;


void solve()
{
	cin >> n >> m;
	for(int i = 1; i <= n; i ++){
		for(int j = 1; j <= m; j ++){
			cin >> a[i][j];
			pre[i][j] = pre[i - 1][j] + pre[i][j - 1] - pre[i - 1][j - 1] + (a[i][j] == 0);
		}
	}
	
	int res = 0;
	for(int i = 1; i <= n; i ++){
		for(int j = 1; j <= m; j ++){
			if(a[i][j] == 0) continue ;
			int d = min(n - i + 1, m - j + 1);
            // 从大到小枚举边长可以减少计算量
			for(int k = d; k >= 1; k --){
				int cnt = pre[i + k - 1][j + k - 1] - pre[i - 1][j + k - 1] - pre[i + k - 1][j - 1] + pre[i - 1][j - 1];
				if(cnt == 0){
					res = max(res, k);
					break;
				}
			}
		}
	}
	
	cout << res << endl;

}

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(nullptr);


    int t = 1;
    //cin>>t;
    while( t -- )
    {
        solve();
    }
    return 0;
}

  • 14
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
洛谷 P1681 最大正方形II 是一个动态规划问题,要求给定一个由 '0' 和 '1' 组成的矩阵,找出其中最大正方形,并输出其边长。 以下是一个 C++ 编写的解答示例: ```cpp #include <iostream> #include <vector> #include <algorithm> using namespace std; int maximalSquare(vector<vector<char>>& matrix) { int rows = matrix.size(); if (rows == 0) return 0; int cols = matrix[0].size(); vector<vector<int>> dp(rows + 1, vector<int>(cols + 1, 0)); int maxSide = 0; for (int i = 1; i <= rows; i++) { for (int j = 1; j <= cols; j++) { if (matrix[i-1][j-1] == '1') { dp[i][j] = min(min(dp[i-1][j], dp[i][j-1]), dp[i-1][j-1]) + 1; maxSide = max(maxSide, dp[i][j]); } } } return maxSide * maxSide; } int main() { int n, m; cin >> n >> m; vector<vector<char>> matrix(n, vector<char>(m)); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { cin >> matrix[i][j]; } } cout << maximalSquare(matrix) << endl; return 0; } ``` 在上述代码中,我们首先定义了一个名为 `maximalSquare` 的函数,该函数接受一个二维字符矩阵 `matrix` 作为参数,返回最大正方形的边长。 在 `main` 函数中,我们首先从标准输入读取矩阵的行数和列数,并创建一个大小为 `n x m` 的二维字符矩阵。然后,我们按行读取矩阵的数据,并调用 `maximalSquare` 函数进行求解。最后,输出最大正方形的边长。 在动态规划的解法中,我们使用一个二维数组 `dp` 来记录以当前位置为右下角的最大正方形的边长。遍历矩阵中的每个元素,如果当前元素为 '1',则根据其左方、上方和左上方的最大正方形边长计算出当前位置的最大正方形边长,并更新 `dp` 数组和最大边长变量。 请注意,以上代码仅为示例,可能需要根据具体题目要求进行适当修改。同时,为了简化示例,未进行输入验证,请确保输入的矩阵符合题目要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值