💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
板中的导波,即兰姆波,其特征是复杂的、多模的、频率色散的波传播,这会扭曲信号,使分析变得困难。从实验数据中估计这些多模态和分散特性成为一个困难的、未确定的逆问题。为了准确而稳健地恢复这些多模态和分散特性,本文提出了一种基于稀疏恢复方法的稀疏波数分析方法。通过利用兰姆波的一般模型,在板结构中传播的波,以及鲁棒的稀疏波数分析的优化策略,通过有限数量的表面安装的换能器,精确地恢复兰姆波的频率-波数表示。在存在多径反射的情况下,这通过模拟和实验数据得到了证明。通过精确的频率-波数表示,稀疏波数合成被用来精确地消除每次测量中的多径干扰,并预测板任意点之间的响应。
在本文中,我们提出了一种基于压缩感知的我们称之为稀疏波数分析的方法,以准确恢复兰姆波的频率-波数表示。使用模拟和实验数据,我们证明我们可以使用这种表示法精确地表示兰姆波的色散曲线。我们然后利用这种频率-波数表示法通过我们称之为稀疏波数去噪的方法,从模拟和实验数据中去除多路径分量,并预测Lamb波在模拟板介质,通过一种我们称之为稀疏的方法波数合成。我们用四个模拟测试了我们的方法增加复杂性。我们发现,即使数据受到多径干扰和建模误差的影响,我们也可以非常准确地恢复介质的频率-波数表示。我们通过以下方式量化这种准确性比较1000个合成信号,对应1000个随机选择的路径,使用稀疏波数生成合成,具有真正的直接路径响应。我们发现,在只有多径干扰的情况下,我们可以实现在0到10000赫兹的宽频率范围内,真实响应和估计响应之间的相关系数为0.975到2MHz。在考虑传感器位置噪声后模拟每个传感器扩展几何形状的误差,我们仍然可以实现0.926的相关系数在120至240 kHz的窄频带内的真实和估计响应。我们应用稀疏波数分析来精确恢复实验数据的频率-波数表示。我们展示了恢复的频率-波数表示,与理论预测非常接近色散曲线。然后,我们使用这种表示法从实验时间轨迹中准确地去除多径分量。此外,我们直观地展示了我们的实验结果和模拟结果之间有很好的对应关系。在未来的工作中,我们计划进一步改进我们的模型和优化,以获得对多径干扰、建模误差和s选择的更大鲁棒性。我们还打算研究这种方法在以下方面可以发挥的作用改进板材损伤的检测和定位以及其他结构。
本文中,我们展示了一个将稀疏波数分析(SWA)应用于受多径干扰影响的仿真数据的例子。这可以学习波数据的频散曲线(即频率-波数表示)。
变量“xm”包含多路径“测量”模拟数据。多路径数据被用作稀疏波数分析(SWA)的输入。
变量“xc”包含理想(无多径)模拟数据。这些数据用于评估我们的稀疏波数去噪结果,即测试去噪数据是否与真正的理想数据相匹配。
变量“xp”包含介质中随机位置(未在训练中使用)的一组理想响应。这些数据用于评估我们的稀疏波数预测结果,即我们能否准确地预测介质中的其他“测量”信号。
该脚本使用两个特定函数:SWA和SWS。
SWA在频率样本“fn”和波数域“k”上对数据“xm”进行稀疏波数分析。稀疏波数分析目前可以使用两种方法之一进行:基底追踪去噪(“bp”)或正交匹配追踪(“omp”)。变量“Rxc”和“Txm”分别表示稀疏波数分析的接收器和发射器的位置。变量“Rxp”表示预测接收器的位置。变量“tau”表示正交匹配追踪的稀疏分量数。稀疏波数分析的输出“V”是数据的频率-波数表示的矩阵。
SWS在波数域“k”上执行稀疏波数合成,给出频率-波数表示“V”。变量“Rxm”和“Txm”或“Rxp”和“Txp”表示发射器和接收器的位置。
涉及检测和定位复杂传播介质中的损伤。这些媒体通常具有以下特征通过多模态和频率分散行为。1这这意味着接收到的测量值可以表示为以不同频率传播的波模的总和依赖速度。通常,每个速度也可能随着环境和作战效果的功能,例如此外,大多数导波系统在物理基础设施表现出物理边界的显著多路径效应。由于所有这些效应,准确地描述和分析制导波浪是非常具有挑战性的。为了成功检测或定位损坏,许多方法依靠背景(或基线)减法,结合之前的测量数据4和非相干信号处理技术5检测并定位损坏区域。背景减除法假设在损坏之前对介质有所了解在波浪出现的情况下,这可能是不切实际的受到各种环境条件的影响。6非相干信号处理技术可用于补偿色散的失真效应,但这些技术从测量结果中删除可能有用的信息数据。对介质的多模态和频率分散行为的准确估计,特别是在存在干扰反射可用于大大改进当前的方法。7在本文中,我们提出了一种新的方法,我们称之为基于缩的稀疏波数分析8-10,以准确恢复多模态和分散性板中导波的性质,也称为兰姆波波浪。压缩感知关注的是准确和有效地恢复信号和系统,这些信号和系统允许稀疏信号表示,其中大部分为零。8,11,12 在这个在论文中,我们展示了兰姆波具有稀疏表示在频率-波数域中,通过这种表示,我们可以准确地恢复兰姆波的参数使用“1优化技术”的波浪。我们使用这些回收参数,用于对测量值进行“去噪”,去除随机噪声和多径信号干扰,并预测板上的任何其他两点之间的测量响应。我们将该过程称为稀疏波数合成。已经提出了许多技术来恢复兰姆波的多模态和色散特性观察数据。这些方法包括二维离散傅里叶变换(2D-DFT),13,14各种时频分析方法、15-17 时域匹配追踪方法、18,19 和其他基于模型的策略。20,21 我们基于压缩感知的方法是然而,它的独特之处在于它利用了频率-波数域中的兰姆波用相对较少的传感器实现高精度。在下来的部分中,我们将概述并讨论我们的使用稀疏表示来恢复数据的方法兰姆的多模态和频率色散行为波浪。在第二节中,我们为兰姆(Lamb)制定了一个通用模型波浪行为。
📚2 运行结果
部分代码:
ks = interp1(fs, ks, f); % Dispesion curves (interpolate for number of frequencies)
Fs = Fs; % Sampling rate
% DEFINE FREQUENCY DOMAIN
df = 1; % Frequency step size
Fb = round(Fmin/Fs*Q); % Minimum frequency sample
Fm = round(Fmax/Fs*Q); % Maximum frequency sample
fn = Fb:df:Fm; % Frequency samples to use
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% DEFINE RANDOM SENSOR LOCATIONS
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% GET RANDOM SENSOR LOCATIONS (FOR CALIBRATION STAGE)
Rxc = 2*(0.5-rand(2,Mc)).'; % Reciever sensor locations
Txc = 2*(0.5-rand(2,1)).'; % Transmitter location
dc = dist(Rxc, Txc.'); % Compute distances
% COMPUTE VIRTUAL TRANSMITTER LOCATIONS TO MODEL MULTIPATH
% REFLECTIONS MODELED USING THE METHOD OF MIRROR IMAGES
Txm = [Txc; [0 -2]+[ Txc(1) -Txc(2)]; ...
[-2 0]+[-Txc(1) Txc(2)]; ...
[0 2]+[ Txc(1) -Txc(2)]; ...
[2 0]+[-Txc(1) Txc(2)]; ];
dm = dist(Rxc, Txm.'); % Compute distances
% GET RANDOM SENSOR LOCATIONS (FOR PREDICTION STAGE)
Rxp = 2*(0.5-rand(2,Mp)).'; % Reciever sensor locations
Txp = 2*(0.5-rand(2,1)).'; % Transmitter location
dp = dist(Rxp, Txp.'); % Compute distances
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% SIMULATE DATA
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% SIMULATE CALIBRATION DATA WITHOUT MULTIPATH NOISE
Xc = sparse(Q,Mc); % Ideal direct path signal
Xc(fn,:) = cell2mat(arrayfun(@(q) nansum(1./sqrt( dc*ks(q,:) ).*exp(-1j*( dc*ks(q,:) )),2), fn, 'UniformOutput', false)).';
xc = 2*real(ifft(full(Xc))); % We are only computing the positive frequency
% components so we need to take the real part
% of the time-domain and multiply by 2
% SIMULATE CALIBRATION DATA WITH MULTIPATH NOISE
Xm = sparse(Q,Mc); % Ideal direct path signal
Xm(fn,:) = cell2mat(arrayfun(@(q) ...
sum(cell2mat(arrayfun(@(p) nansum(1./sqrt( dm(:,p)*ks(q,:) ).*exp(-1j*( dm(:,p)*ks(q,:) )),2), 1:size(dm,2) , 'UniformOutput', false)),2), ...
fn, 'UniformOutput', false)).';
xm = 2*real(ifft(full(Xm))); % We are only computing the positive frequency
% components so we need to take the real part
% of the time-domain and multiply by 2
% SIMULATE DATA TO PREDICT
Xp = sparse(Q,Mp); % Ideal direct path signal
Xp(fn,:) = cell2mat(arrayfun(@(q) nansum(1./sqrt( dp*ks(q,:) ).*exp(-1j*( dp*ks(q,:) )),2), fn, 'UniformOutput', false)).';
xp = 2*real(ifft(full(Xp))); % We are only computing the positive frequency
% components so we need to take the real part
% of the time-domain and multiply by 2
% SET DOMAINS
k = linspace(1/Km, Km, N).'; % Discrete wavenumber domain
r = floor(Q/2)+1; f = ifftshift((((1:Q)-r)/Q))*Fs;
t = 1/Fs:1/Fs:Q/Fs;
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
🌈4 Matlab代码、数据、文章
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取