💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
摘要
本文研究了具有非线性不确定性的多智能体系统的固定时间事件触发共识控制问题。基于事件触发策略的固定时间共识协议被提出,这些协议可以显著降低能量消耗和控制器更新的频率。集中式和分布式共识控制策略均被考虑。证明了在所提出的事件触发共识控制策略下,可以避免Zeno行为。与有限时间共识相比,固定时间共识可以在固定的收敛时间内达成,而与智能体的任意初始状态无关。最后,通过两个例子展示了固定时间事件触发共识协议的有效性。
关键词:固定时间,事件触发,共识,多智能体系统,非线性不确定性
1. 引言
近年来,多智能体系统的协同控制受到了广泛关注,并取得了许多重要成果,例如队形控制[1, 2]、群体行为[3, 4]、数据融合[5]等。作为协同控制的一个基本问题,共识是一种典型的集体行为,要求所有智能体通过与邻居通信达成一个共同的值或协议[6]。
值得注意的是,关于多智能体系统共识问题的大多数现有研究都集中在渐近共识结果上,这意味着共识只能在无限时间内达成[7, 8, 9, 10, 11]。在[7]中,研究了具有噪声和时延的线性多智能体系统的分布式共识算法。在[8]中,研究了具有固定和切换拓扑结构的网络拓扑的共识问题,而在[9]中则考虑了随机连接故障的情况。对于具有外部干扰和输入时延的系统模型,多智能体系统的共识控制算法已在[10, 11]中进行了研究。然而,收敛速度是多智能体系统共识的一个重要特性。这自然导致了对共识收敛速度的控制协议的分析和构建。
与渐近结果的收敛速度相比,有限时间共识结果具有更好的动态特性。受到有限时间控制协议优势的启发,例如更高的精度和更快的收敛速度[12],近年来有限时间共识控制受到了广泛关注[12, 13, 14]。在[13]中,提出了基于连续状态反馈的动态智能体网络的分布式有限时间共识控制协议。通过引入幂次积分器方法,提出了适用于无领导者和有领导者多智能体系统的连续有限时间共识协议[14]。在这些研究中,有限时间共识的收敛时间取决于所有智能体的初始状态。因此,如果初始状态非常大,收敛时间可能会变得非常长。
为了应对这些限制,基于固定时间稳定性的新工作[15]已被研究,可以确保收敛时间与智能体的初始状态无关。在[16]中,提出了适用于线性多智能体系统的固定时间共识协议,这些协议基于线性和非线性状态测量。在具有有向和间歇通信的网络化智能体中,如果时间间隔之和大于一个可分析的有界值,则固定时间共识将在更长的收敛时间内实现,这一研究在[17]中进行了探讨。不幸的是,许多实际系统是非线性的,一些本质上非线性现象只有在非线性存在的情况下才会发生。这自然带来了对非线性多智能体系统共识控制协议的分析和构建。在[18]中,提出了一种适用于具有非线性干扰的多智能体系统的经典连续固定时间共识协议,并考虑了固定时间钉扎控制问题。在[19]中,研究了具有未知非线性动态的多智能体系统的固定时间领导者跟随问题。
在上述工作中,考虑了连续控制策略,这可能导致通信消耗大和控制器更新频率高。事件触发控制是一种有效的解决方法,近年来已取得了一些有益的成果[20, 21, 22, 23, 24, 25]。此外,事件触发控制也广泛应用于离散时间情况和复杂网络[26, 27, 28]。集中式事件触发多智能体系统的共识控制最初在[20, 21]中提出。整个多智能体系统共享一个依赖于所有智能体状态的事件触发函数,并同时更新所有控制输入。与需要全局状态信息的集中式事件触发函数相比,每个智能体的分布式事件触发函数仅基于邻居的信息。在[23]中,提供了一种分布式事件触发控制算法,用于研究线性一阶系统,并扩展到线性二阶系统。在[24]中,研究了具有通用线性动态的多智能体系统的分布式事件触发共识控制,并且可以渐近地达成共识。在[25]中,考虑了具有非线性动态的非线性多智能体系统的事件触发共识。考虑到收敛速度问题,已在[29, 30]中提出了有限时间事件触发共识算法。在[29]中,考虑了无领导者和有领导者两种情况。在[30]中,提出了两个充分条件,用于具有固定和切换网络拓扑的多智能体系统达成有限时间共识。然而,这些算法尚未考虑固定时间事件触发共识或非线性不确定性。
受现有工作的启发,本文提出了具有非线性不确定性的多智能体系统的固定时间事件触发共识算法。与本文相关的以往工作相比,本文所展示的结果具有以下特点。首先,开发了集中式和分布式事件触发共识控制策略。其次,固定时间共识算法可以确保收敛时间与智能体的初始条件无关。最后,考虑了具有非线性不确定性的多智能体系统。据作者所知,迄今为止关于具有非线性不确定性的多智能体系统的固定时间事件触发共识的结果还很少。
本文的其余部分安排如下:第2节给出预备知识、问题描述和多智能体系统的动态模型。第3节提出了适用于具有非线性不确定性的多智能体系统的固定时间集中式事件触发共识算法。第4节讨论了固定时间分布式事件触发共识算法。第5节通过两个例子说明了固定时间事件触发共识算法。第6节总结了本文。
本文提出了具有非线性不确定性的多智能体系统的固定时间事件触发共识控制算法。集中式和分布式共识控制策略均被考虑。与集中式事件触发控制相比,分布式事件触发策略大大减轻了网络的占用,并具有更好的系统特性。通过采用事件触发控制方法,可以显著降低能量消耗和控制器更新的频率。固定时间共识算法能够确保在任意初始条件下达成共识的收敛时间。最后,通过两个关于固定时间事件触发共识控制问题的例子,展示了控制算法的有效性。未来将进一步研究在有向图下二阶多智能体系统的固定时间事件触发共识跟踪问题。
📚2 运行结果
2.1 集中式运行结果
2.2 分布式运行结果
部分代码:
if f1>=0%第1个智能体事件触发
xtk_1=x;
end
if f2>=0%第2个智能体事件触发
xtk_2=x;
end
if f3>=0%第3个智能体事件触发
xtk_3=x;
end
if f4>=0%第4个智能体事件触发
xtk_4=x;
end
if f5>=0%第5个智能体事件触发
xtk_5=x;
end
A=A+1;
end
f2_e=norm(e);%测量误差2范数
f2_E=[f2_E;f2_e];%保存测量误差
f2_y=norm(y);%测量误差2范数
f2_Y=[f2_Y;f2_y];
f2_2=0.5*c3*norm(y);
f2_3=[f2_3;f2_2];
f=norm(e)-f2_2;%trigger fuction
if f>=0%事件触发
xhat=x;
t1=A;
T_1=[T_1;t1];
else %事件未触发
xhat=xhat;
end
A=A+1;
end
figure(1)
plot(Ts,X,'LineWidth',1);
xlabel('time(s)');ylabel({'positions of agents';'x_{i}'});
legend('x_1','x_2','x_3','x_4','x_5');
grid on
figure(2)
plot(Ts,U,'LineWidth',1);
xlabel('time(s)');ylabel('control input');
legend('u_1','u_2','u_3','u_4','u_5');
grid on
figure(3)
plot(Ts,E1,Ts,Y1,'LineWidth',1);
xlabel('time(s)');ylabel('||e1||');
legend('||e1||','0.6||y1||')
grid on
figure(4)
plot(Ts,E2,Ts,Y2,'LineWidth',1);
xlabel('time(s)');ylabel('||e2||');
legend('||e2||','0.6||y2||')
grid on
figure(5)
plot(Ts,E3,Ts,Y3,'LineWidth',1);
xlabel('time(s)');ylabel('||e3||');
legend('||e3||','0.6||y3||')
grid on
figure(6)
plot(Ts,E4,Ts,Y4,'LineWidth',1);
xlabel('time(s)');ylabel('||e4||');
legend('||e4||','0.6||y4||')
grid on
figure(7)
plot(Ts,E5,Ts,Y5,'LineWidth',1);
xlabel('time(s)');ylabel('||e5||');
legend('||e5||','0.6||y5||')
grid on
ut1=U;
n=size(ut1,1);
T_1=[];T_2=[];T_3=[];T_4=[];T_5=[];
for i=1:n-1
if abs(ut1(i,1)-ut1(i+1,1))>0.001
t1=i;
T_1=[T_1;t1];
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
🌈4 Matlab代码、文献下载
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取