💥💥💥💞💞💞欢迎来到本博客❤️❤️❤️💥💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
目录
💥1 概述
2006年, Donoho等人[4提出压缩感知(Com-pressive Sensing , CS)概念框架,并用数学模型为理论提供支撑。压缩感知理论突破了奈奎斯特采样定理对信号维度的限制,避免稀疏信号在奈奎斯特采样时会产生的大量冗余信息,并缓解硬件设备和算法负担。
鲸鱼优化算法(Whale Optimization Algorithm,简称WOA)是一种启发式算法,受到鲸鱼在寻找猎物时的行为启发而提出的。它主要用于解决优化问题,包括信道估计问题。
5G信道估计是为了获取无线信道的状态信息,以便进行资源分配、功率控制等操作。在使用鲸鱼优化算法进行5G信道估计时,如下:
1. 定义问题:明确信道估计的目标和约束条件。例如,可以将问题定义为最小化信道误差的均方根(Root Mean Square Error,RMSE)。
2. 初始化种群:随机生成一些鲸鱼个体作为初始种群。
3. 迭代更新:通过模拟鲸鱼的搜索行为进行迭代更新。具体来说,可以按照以下步骤进行:
- 计算适应度:根据当前鲸鱼个体的位置,计算其对应的适应度值,即信道误差。
- 更新最优个体:记录当前种群中适应度最好的个体作为当前的最优解。
- 更新位置:根据当前个体的适应度值和最优个体的位置,更新每个鲸鱼个体的位置。
- 更新搜索半径:根据当前迭代次数和最大迭代次数的比值,更新每个鲸鱼个体的搜索半径。
- 达到停止条件:判断是否达到停止条件,如果是,则停止迭代;否则,返回到第一步进行下一轮迭代。
4. 输出结果:根据迭代结束后的最优个体,得到信道估计结果。
需要注意的是,鲸鱼优化算法的效果与具体的问题、算法参数设置以及迭代次数等因素有关,因此在实际应用中,可以根据具体情况进行调整和优化。此外,还可以结合其它算法和技术,如机器学习方法和统计方法,来进一步提高5G信道估计的性能。
基于鲸鱼优化算法的5G信道估计研究
一、引言
1.1 研究背景
5G技术的迅猛发展对信道估计提出了更为严苛的要求。在5G通信系统中,为了实现高效的资源分配、精准的功率控制以及可靠的数据传输等操作,获取无线信道的状态信息至关重要。传统的信道估计方法在面对5G复杂的信道环境时,逐渐暴露出一些局限性。
压缩感知理论的出现是信道估计领域的重要突破,它突破了奈奎斯特采样定理对信号维度的限制。在传统的奈奎斯特采样中,对于稀疏信号会产生大量冗余信息,这不仅增加了硬件设备的负担,也加大了算法处理的复杂度。而压缩感知理论能够避免这些问题,为5G信道估计提供了全新的思路。
1.2 研究意义
鲸鱼优化算法(Whale Optimization Algorithm,简称WOA)作为一种启发式算法,是受鲸鱼在寻找猎物时的行为启发而提出的。该算法具有诸多优点,例如其原理简练易于实现,对目标函数的条件要求较为宽松,并且所需控制的参数较少。这些特性使得WOA算法为5G信道估计问题提供了一种新的有效解决方案,有望提升5G信道估计的性能与效率。
二、鲸鱼优化算法(WOA)简介
2.1 算法原理
WOA算法源于对自然界中座头鲸群体狩猎行为的模拟。座头鲸在狩猎过程中,通过群体协作来搜索、包围、追捕和攻击猎物,WOA算法正是基于这一行为实现优化搜索的目的。
算法主要包含以下几个数学模型:
- 包围猎物:座头鲸在发现猎物后,会逐渐靠近并包围它。在算法中,通过特定的数学公式来模拟鲸鱼个体向猎物(最优解)靠近的过程,不断缩小与最优解的距离。
- 螺旋气泡:座头鲸在捕食时会围绕猎物制造螺旋形的气泡网,以困住猎物。在算法里,通过构建螺旋模型来更新鲸鱼个体的位置,使得算法在搜索最优解时能够在局部区域进行精细搜索,避免陷入局部最优。
- 寻找猎物:在搜索初期,鲸鱼会在整个搜索空间中随机游动,以寻找潜在的猎物。这一过程对应算法中鲸鱼个体在整个解空间中进行随机搜索,增加了找到全局最优解的可能性。
算法通过迭代更新鲸鱼个体的位置来寻找最优解。在每次迭代中,根据当前个体的适应度值以及与最优个体的关系,对鲸鱼个体的位置进行调整,逐步向最优解逼近。
2.2 算法步骤
-
初始化种群:随机生成一些鲸鱼个体作为初始种群。每个鲸鱼个体代表问题的一个潜在解,其位置在搜索空间中随机确定。种群规模的大小会影响算法的搜索效率和收敛速度,一般需要根据具体问题进行合理设置。
-
计算适应度:根据当前鲸鱼个体的位置,计算其对应的适应度值。在5G信道估计问题中,适应度值可以定义为信道误差,例如信道误差的均方根(Root Mean Square Error,RMSE)。RMSE值越小,说明该鲸鱼个体对应的信道估计结果越准确,适应度越高。
-
更新最优个体:记录当前种群中适应度最好的个体作为当前的最优解。这个最优解代表了在当前迭代中找到的最接近全局最优解的个体,它将作为其他个体更新位置的参考。
-
更新位置:根据当前个体的适应度值和最优个体的位置,更新每个鲸鱼个体的位置。具体的更新公式会综合考虑鲸鱼个体与最优个体的距离、算法的探索和开发能力等因素。在更新位置的过程中,算法既要保证能够在全局范围内进行搜索,以找到更好的解,又要能够在局部区域进行精细搜索,以优化当前的最优解。
-
达到停止条件:判断是否达到停止条件,如果是,则停止迭代;否则,返回到计算适应度步骤进行下一轮迭代。停止条件可以是达到最大迭代次数、适应度值的变化小于某个阈值等。
-
输出结果:根据迭代结束后的最优个体,得到信道估计结果。这个结果就是经过鲸鱼优化算法搜索后得到的最优信道估计值。
三、基于WOA的5G信道估计
3.1 问题定义
明确信道估计的目标和约束条件是应用鲸鱼优化算法进行5G信道估计的首要任务。例如,可以将问题定义为最小化信道误差的均方根(RMSE)。具体来说,RMSE的计算公式为: RMSE=1N∑i=1N(hi−h^i)2RMSE=N1∑i=1N(hi−h^i)2 其中,NN 是样本数量,hihi 是真实的信道响应,h^ih^i 是估计的信道响应。通过最小化RMSE,能够使得估计的信道与真实信道尽可能接近,从而提高信道估计的准确性。
同时,在实际的5G信道环境中,还存在一些约束条件,如信号功率限制、带宽限制等。这些约束条件在信道估计过程中需要被充分考虑,以确保估计结果的可行性和有效性。
3.2 算法实现
结合5G信道的特点,将WOA算法应用于信道估计问题中。在实现过程中,需要进行以下操作:
- 设置算法参数:
- 最大迭代次数:决定了算法运行的轮数,较大的最大迭代次数可能会使算法找到更好的解,但也会增加计算时间。一般需要通过多次实验来确定一个合适的值,以平衡算法的性能和效率。
- 搜索代理数量:即初始种群的大小。较多的搜索代理数量可以增加算法在搜索空间中的覆盖范围,提高找到全局最优解的可能性,但同时也会增加计算资源的消耗。通常根据问题的复杂程度和计算资源的情况来选择合适的搜索代理数量。
- 变量上下界:定义了搜索空间的范围。在5G信道估计中,信道参数往往有一定的取值范围,通过设置变量上下界,可以确保鲸鱼个体的位置在合理的范围内,避免算法搜索到无效的解。
- 算法流程:首先按照上述设置初始化种群,然后在每一轮迭代中,依次计算每个鲸鱼个体的适应度值,更新最优个体,并根据更新规则调整鲸鱼个体的位置。不断重复这个过程,直到满足停止条件。
3.3 性能评估
为了评估WOA算法在5G信道估计中的优劣,需要进行性能评估,主要从以下两个方面展开:
- 与其他算法比较:通过比较不同算法(如LS(最小二乘法)、MMSE(最小均方误差估计)等)在相同条件下的信道估计性能,来分析WOA算法的性能表现。可以使用均方误差(MSE)、误码率(BER)等指标来衡量信道估计的准确性和可靠性。
- 均方误差(MSE):计算公式为 MSE=1N∑i=1N(hi−h^i)2MSE=N1∑i=1N(hi−h^i)2,它反映了估计值与真实值之间误差的平均大小。MSE值越小,说明信道估计越准确。
- 误码率(BER):是指在传输数据过程中发生错误的码元数与传输总码元数之比。较低的BER表示信道估计结果能够支持更可靠的数据传输。
- 分析算法参数对性能的影响:研究算法参数(如迭代次数、搜索代理数量等)对性能的影响。通过改变这些参数的值,观察信道估计性能指标的变化情况,从而确定每个参数的最优取值范围,以便在实际应用中能够根据具体需求进行合理设置,优化算法性能。
四、仿真结果与分析
4.1 仿真设置
- 仿真环境:使用Matlab软件搭建仿真平台,利用其丰富的通信工具箱和数学计算函数,能够方便地实现5G信道模型的构建、算法的编程实现以及性能指标的计算。
- 参数设置:设置了多个参数,例如:
- 定义OFDM符号数量为 1×1011×101 个。
- 选择TDLC - 300信道模型来模拟5G信道的特性,该模型能够较好地反映5G信道的多径衰落等特点。
- 信号噪声比(SNR)范围设置为 0:5:300:5:30 dB,通过改变SNR值来模拟不同的信道噪声环境,观察算法在不同噪声条件下的性能表现。
- 符号数量设置为 1×1011×101 个,循环前缀(CP)长度设置为快速傅里叶变换(FFT)点数的 1/41/4,子载波间隔为 30×10330×103 Hz,每个调制符号的比特数为4,每秒传输的比特数为 1×1031×103 等。
- 仿真流程:首先根据上述参数设置初始化仿真环境,然后分别运行LS、WOA和MMSE等算法进行信道估计。在每次运行算法时,按照算法步骤进行迭代计算,记录每个算法在不同SNR条件下的信道估计性能指标(如MSE、BER等)。最后对记录的数据进行整理和分析,绘制性能曲线,以便直观地比较不同算法的性能差异。
4.2 仿真结果
展示不同算法在不同信噪比(SNR)下的信道估计性能,具体结果如下:
- 均方误差(MSE):在低SNR情况下,WOA算法的MSE值与LS算法和MMSE算法相比,处于中等水平。随着SNR的增加,WOA算法的MSE值下降趋势较为明显,逐渐优于LS算法,并且在高SNR时,与MMSE算法的MSE值接近。这表明WOA算法在噪声环境逐渐改善的情况下,能够有效地提高信道估计的准确性。
- 误码率(BER):在不同SNR条件下,WOA算法的BER曲线呈现出先下降后趋于平稳的趋势。与LS算法相比,WOA算法在大多数SNR值下具有更低的BER,说明其在支持可靠数据传输方面具有一定优势。与MMSE算法相比,在中低SNR时,WOA算法的BER略高于MMSE算法,但在高SNR时,两者的BER差距逐渐缩小。
4.3 结果分析
- WOA算法的优势:从仿真结果可以看出,WOA算法在5G信道估计中具有一定的优势。首先,它能够在复杂的信道环境中通过迭代搜索逐渐找到较优的信道估计解,尤其在高SNR情况下,其估计性能与传统的优秀算法(如MMSE)相当。其次,与LS算法相比,WOA算法在不同SNR条件下都能提供更准确的信道估计结果,具有更好的适应性。这得益于WOA算法的群体搜索和自适应调整机制,使其能够在搜索空间中不断探索和优化。
- WOA算法的不足:然而,WOA算法也存在一些不足之处。在低SNR时,其MSE和BER性能相对MMSE算法仍有一定差距,说明在强噪声环境下,算法的抗干扰能力还有待提高。此外,虽然WOA算法在原理上易于实现,但在实际应用中,算法参数的选择对性能影响较大,需要花费一定的时间和精力进行参数调优。
- 算法参数对性能的影响及优化策略:通过仿真还发现,迭代次数和搜索代理数量对WOA算法的性能有显著影响。当迭代次数较少时,算法可能无法充分搜索到最优解,导致性能较差;而过多的迭代次数会增加计算时间,对实际应用的实时性产生影响。搜索代理数量过少时,算法在搜索空间中的覆盖范围有限,容易陷入局部最优;而过多的搜索代理数量则会增加计算资源的消耗。因此,在实际应用中,可以采用自适应调整参数的策略,例如在算法运行初期设置较大的搜索代理数量和迭代次数,以充分探索搜索空间,随着算法的推进,根据性能指标的变化动态调整参数,以平衡计算效率和性能。同时,还可以结合其他优化算法或技术,进一步提高WOA算法在5G信道估计中的性能。
五、结论与展望
5.1 研究成果总结
本研究将鲸鱼优化算法(WOA)应用于5G信道估计问题,通过理论分析和仿真实验,取得了以下成果:
- 详细阐述了WOA算法的原理和步骤,并结合5G信道估计问题,明确了问题定义和算法实现的具体过程。
- 通过与LS、MMSE等传统算法的对比仿真,评估了WOA算法在不同信噪比条件下的信道估计性能。结果表明,WOA算法在高SNR环境下能够提供准确的信道估计结果,具有较好的适应性和优化能力。
- 分析了算法参数对性能的影响,发现迭代次数和搜索代理数量等参数对算法性能至关重要,并提出了一些参数优化策略。
5.2 进一步研究方向
尽管本研究取得了一定的成果,但基于WOA的5G信道估计仍有许多可进一步研究的方向:
- 结合其他算法和技术:可以将WOA算法与机器学习方法(如深度学习算法)相结合。深度学习算法在处理复杂非线性问题时具有强大的能力,与WOA算法的优化能力相结合,有望进一步提高5G信道估计的性能。此外,还可以结合统计方法,利用信道的统计特性来优化算法的搜索过程,提高算法的收敛速度和准确性。
- 优化算法参数:进一步深入研究算法参数的优化问题,开发更加智能的参数调整策略。例如,采用自适应参数调整机制,使算法能够根据信道的实时变化自动调整参数,以达到最佳的性能表现。
- 实际场景应用:将基于WOA的5G信道估计算法应用于实际的5G通信系统中,进行实地测试和验证。研究算法在实际复杂环境中的性能稳定性和可靠性,解决实际应用中可能遇到的问题,推动该算法从理论研究向实际工程应用的转化。
📚2 运行结果
部分代码:
% Channel estimation using LS, WOA and MMSE
% Number of OFDM Symbol = 1e1
% Channel model: TDLC-300
clc, clear; close all;
methods = {'LS ', 'WOA', 'MMSE'} % Channel estimation methods
snrRange = 0:5:30; % Signal to noise ratio in dB
numSymbol = 1e1; % Number of symbols
numFft = 4096; % Size of DFT
numCp = numFft/4; % Number of CP
subCarrierSpacing = 30e3; % Subcarrier Spacing
numBitPerSym = 4; % Number of bits per (modulated) symbol
numSymPerPilot = 12; % Number of (modulated) symbol per pilots
numBitBerSecond = 1e3; % Number of bits per second
signalEnergy = 100; % Energy of signal
% Propagation Channel Model Configuration
% Create a TDL channel model object and specify its propagation characteristics.
numTapEst = 400; % Number of est. channel taps
numTap = 320; % Number of true channel taps
% TDLC300-100
tapDelay = [0 65 70 190 195 200 245 325 520 1045 1510 2595]; % in ns
tapPower = [-6.9 0 -7.7 -2.5 -2.4 -9.9 -8.0 -6.6 -7.1 -13.0 -14.2 -16.0]; % in dB
% WOA Alg
maxIter = 8; % maximum number of generations
numAgent = 8; % Number of search agents
ub = [50 100 400]; % [ub1,ub2,...,ubn] where ubn is the upper bound of variable n
lb = [0 20 0]; % [lb1,lb2,...,lbn] where lbn is the lower bound of variable n
dim = 3; % Number of variables
positions = rand(numAgent, dim).*(ub-lb) + lb;
visualization = 0;
saveOrNot = 0; % = 1 for save
sampRate = numFft*subCarrierSpacing; % Sample rate
numPilot = ceil(numFft/numSymPerPilot); % Number of pilots per OFDM symbol
pilotLoc = zeros(numPilot, 1); % Pilot's Location
pathLoss = zeros(numTap, 1);
tapSample = round(tapDelay*1e-9*sampRate);
pathLoss(tapSample+1) = 10.^(tapPower/10); % Path loss of channel
M = 2^numBitPerSym; % M - QAM
A = sqrt(3/2/(M-1)*signalEnergy); % QAM normalization factor
Nofdm = numFft + numCp; % Number of OFDM
numData = numFft - numPilot; % Number of data
MSEs_snr = zeros(length(snrRange),length(methods));
ber_snr = zeros(length(snrRange),length(methods));
fileIdx = getFileId(saveOrNot);
tic
for snrIdx = 1:length(snrRange)
SNR = snrRange(snrIdx);
er = zeros(1,length(methods));
MSE = zeros(1,length(methods));
for nsym=1:numSymbol
msgint = randi([0 M-1],numFft-numPilot,1); % Symbol generation
data = qammod(msgint, M);
% Add pilot
p = randi([0, M-1], numPilot, 1); % Pilot sequence generation
pilot = qammod(p, M);
ip = 0;
X = zeros(numFft, 1);
for k=1:numFft
if rem(k,numSymPerPilot)== 1
ip = ip+1;
X(k)=pilot(floor(k/numSymPerPilot)+1); % For pilot
pilotLoc(ip) = k; % For pilot location
else
X(k) = data(k-ip); % For data
end
end
% OFDM
x = ifft(X,numFft); % IFFT
xt = [x(numFft-numCp+1:numFft); x]; % add CP
% PA
tx = A*xt;
signalPowerdB = 10*log10(cov(tx));
% Channal gain
h = (randn(numTap, 1)+1j*randn(numTap, 1))...
.*sqrt(pathLoss/2); % Channel gain
H = fft(h,numFft); % True channel frequency respond
H_power_dB = 10*log10(abs(H.*conj(H))); % True channel power in dB
y_channel = conv(tx,h); % Channel path (convolution)
% Add noise
rx = awgn(y_channel, SNR, 'measured');
% rx = y_channel + 1/(sqrt(2.0)*10^(SNR/20))*complex(randn(size(y_channel)),randn(size(y_channel)));
% sto = sto_est(rx, numFft, numCp);
% Receiver
y = rx(numCp+1:Nofdm); % Remove CP
Y = fft(y); % FFT
% Channel estimation
for methodIdx = 1:length(methods)
method = methods{methodIdx};
if method(1) == 'L'
% LS estimation with linear interpolation
H_est = LS_CE(Y,pilot,pilotLoc,numFft, 'linear');
elseif method(1) == 'W'
% WOA estimation
[H_est, positions] = WOA_CE(Y,pilot,pilotLoc,numFft, numSymPerPilot, numBitPerSym, ...
positions, numAgent, maxIter, lb, ub, dim);
elseif method(1) == 'M'
% MMSE estimation
H_est = MMSE_CE(Y,pilot,pilotLoc,numFft,numSymPerPilot,h,SNR);
end
if method(end) == 'T'
h_est = ifft(H_est); % Esti channel gain
h_est = h_est(1:numTapEst); % N-tap channel gain
H_est = fft(h_est,numFft); % DFT-based channel estimation
end
H_est_power_dB = ...
10*log10(abs(H_est.*conj(H_est))); % Esti channel power in dB
Y_eq = Y./H_est;
Data_extracted = zeros(numFft- numPilot, 1);
ip = 0;
for k=1:numFft
if mod(k,numSymPerPilot)==1
ip=ip+1;
else
Data_extracted(k-ip)=Y_eq(k);
end
end
msg_detected = qamdemod(Data_extracted, M);
bitDetected = de2bi(msg_detected, numBitPerSym);
bitTrans = de2bi(msgint, numBitPerSym);
er(methodIdx) = er(methodIdx) + sum(sum(bitDetected~=bitTrans));
MSE(methodIdx) = MSE(methodIdx) + (H-H_est/A)'*(H-H_est/A);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if visualization
figure(snrIdx)
subplot(1, length(methods), methodIdx)
hold on
scatter(real(Data_extracted), imag(Data_extracted), 'b.')
title(methods{methodIdx})
pause(0)
end
end
end
MSEs = MSE/(numFft*numSymbol);
MSEs_snr(snrIdx, :) = MSEs;
ber_snr(snrIdx, :) = er/(numSymbol*numData*numBitPerSym);
for methodIdx = 1:length(methods)
str = sprintf('SNR = %2.0f dB: BER of %s \t= %6.5f\n', SNR, methods{methodIdx}, ber_snr(snrIdx, methodIdx));
fprintf(str)
if saveOrNot
if methodIdx == 1
fprintf(fileIdx, '\n-----------------------------------------\n');
end
fprintf(fileIdx, str);
end
end
end
if saveOrNot
fclose(fileIdx);
end
figure
subplot(121)
semilogy(snrRange, ber_snr)
legend(methods{:})
xlabel('SNR')
ylabel('BER')
grid on
subplot(122)
semilogy(snrRange, MSEs_snr)
legend(methods{:})
xlabel('SNR')
ylabel('MSE')
grid on
toc
% Local Functions
function [H_interpolated] = interpolate(H,pilot_loc,Nfft,method)
% Input: H = Channel estimate using pilot sequence
% pilot_loc = Location of pilot sequence
% Nfft = FFT size
% method = 鈥檒inear鈥�/鈥檚pline鈥�
% Output: H_interpolated = interpolated channel
if pilot_loc(1)>1
slope = (H(2)-H_est(1))/(pilot_loc(2)-pilot_loc(1));
H = [H(1)-slope*(pilot_loc(1)-1); H]; pilot_loc = [1; pilot_loc];
end
if pilot_loc(end) <Nfft
slope = (H(end)-H(end-1))/(pilot_loc(end)-pilot_loc(end-1));
H = [H; H(end)+slope*(Nfft-pilot_loc(end))];
pilot_loc = [pilot_loc; Nfft];
end
if lower(method(1))=='l'
H_interpolated = interp1(pilot_loc,H,[1:Nfft]', 'linear');
else
H_interpolated = interp1(pilot_loc,H,[1:Nfft]', 'spline');
end
end
function H_LS = LS_CE(Y,Xp,pilot_loc,Nfft,int_opt)
% LS channel estimation function
% Inputs:
% Y = Frequency-domain received signal
% Xp = Pilot signal
% pilot_loc = Pilot location
% N = FFT size
% Nps = Pilot spacing
% output:
% H_LS = LS Channel estimate
LS_est = Y(pilot_loc)./Xp; % LS channel estimation
if lower(int_opt(1))=='l'
method='linear';
else
method='spline';
end
% Linear/Spline interpolation
H_LS = interpolate(LS_est,pilot_loc,Nfft,method);
end
function H_MMSE = MMSE_CE(Y,Xp,pilot_loc,Nfft,Nps,h,SNR)
% MMSE channel estimation function
% Inputs:
% Y = Frequency-domain received signal
% Xp = Pilot signal
% pilot_loc = Pilot location
% Nfft = FFT size
% Nps = Pilot spacing
% h = Channel impulse response
% SNR = Signal-to-Noise Ratio[dB]
% output:
% H_MMSE = MMSE channel estimate
% Calculate RMS delay spread
Ph = h.*conj(h);
Ptotal = h'*h;
t_sym = 1*(0:length(h)-1)';
t_mean = sum(t_sym.*Ph/Ptotal);
t_cov = sum(t_sym.^2.*Ph/Ptotal);
t_rms = sqrt(t_cov-t_mean^2);
f_max = 100;
H_MMSE = MMSE_ideal(Y,Xp,pilot_loc,Nfft,Nps,SNR, t_rms, f_max);
end
function [H_WOA, Positions] = WOA_CE(Y,Xp,pilot_loc,Nfft,Nps, Nbs, ...
Positions, NumAgent, Max_iter, lb, ub, dim)
% fobj = @CostFunction
% dim = number of your variables
% Max_iteration = maximum number of generations
% SearchAgents_no = number of search agents
% lb = [lb1,lb2,...,lbn] where lbn is the lower bound of variable n
% ub = [ub1,ub2,...,ubn] where ubn is the upper bound of variable n
fobj = @ (x) MMSE_loss(Y, Xp, pilot_loc, Nfft, Nps, Nbs, x(1), x(2), x(3));
x = WhaleOptAlg(NumAgent,Max_iter,lb,ub,dim,fobj);
SNR = x(1);
t_rms = x(2);
f_max = x(3);
H_WOA = MMSE_ideal(Y,Xp,pilot_loc,Nfft,Nps,SNR, t_rms, f_max);
end
function fileId = getFileId(enable)
if enable == 0
fileId = 0;
return
end
ctime = clock;
cmonth = ctime(2); smonth = num2str(cmonth);
cday = ctime(3); sday = num2str(cday);
chour = ctime(4); shour = num2str(chour);
cminute = ctime(5); sminute = num2str(cminute);
fileName = ['CE', smonth, sday, shour, sminute, '.txt'];
fileId = fopen(fileName, 'w');
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)