💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于灰狼算法(GWO)优化ICEEMDAN参数的研究
一、ICEEMDAN方法的基本原理与参数组成
ICEEMDAN(Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise)是一种改进的自适应噪声完备集合经验模态分解方法,专为处理非线性与非平稳信号设计。其核心思想是通过自适应噪声控制技术,减少模态混叠和残余噪声,同时提高分解的精度和稳定性。具体步骤如下:
- 信号预处理:消除极端值或单调趋势,避免分解过程中噪声干扰。
- 自适应噪声添加:在原始信号中多次添加有限次数的自适应白噪声,生成多组试验信号。
- 模态分解与平均:对每组加噪信号进行EMD分解,得到IMF分量后取集合平均,获得第一阶IMF;残差信号进一步分解直至无法提取新IMF。
- 收敛性控制:通过自适应调整噪声大小和分布,确保IMF分量的收敛性。
关键参数:
- 噪声标准差(ε) :控制添加噪声的强度,影响分解的平滑度与抗噪性。
- 边界点(k) :划分高频与低频IMF分量的阈值,用于信号重构。
- 分解层数(K) :决定IMF的数量,需平衡计算效率与分解完整性。
二、灰狼算法(GWO)的核心机制与优化流程
GWO是一种受灰狼群体狩猎行为启发的元启发式算法,通过模拟α、β、δ狼的层级结构引导搜索过程。其核心机制包括:
-
包围猎物:灰狼根据猎物位置更新自身位置,公式为:
其中,A=2a⋅r1−a,C=2r2,a随迭代次数线性递减,控制全局与局部搜索的平衡。
-
狩猎与攻击:α、β、δ狼的位置指导其他个体逼近最优解,最终位置由三者位置的加权平均确定。
-
动态权重与非线收敛因子:改进算法(如IGWO)引入非线性收敛因子和动态权重,增强全局搜索能力。
优化流程:
- 初始化种群:设置灰狼数量、迭代次数及参数范围。
- 适应度评估:计算当前参数组合下ICEEMDAN分解的目标函数值(如最小包络熵)。
- 更新位置:根据α、β、δ狼的位置调整参数,迭代优化直至收敛。
三、四种适应度函数的数学定义与作用
-
最小包络熵(Minimum Envelope Entropy)
反映信号周期性,计算步骤如下:- 对IMF分量进行Hilbert变换,提取包络信号a(t);
- 归一化包络信号并计算熵值:
优势:对噪声敏感,适合提取周期性冲击特征。
-
样本熵(Sample Entropy)
衡量信号复杂度,计算步骤:- 构造m维向量序列,统计相似容限r内的匹配概率;
- 样本熵公式:
特点:参数一致性较好,适用于非平稳信号。
-
信息熵(Information Entropy)
表征信号不确定性,公式为:其中pk为信号类别的概率分布。低熵值对应高纯度分量。
-
排列熵(Permutation Entropy)
检测动力学突变,计算步骤:- 将信号序列映射为排列模式;
- 计算排列概率并求熵:
应用:对信号微小变化敏感,适合故障检测。
四、GWO优化ICEEMDAN参数的实现流程
- 参数选择:优化目标为ICEEMDAN的关键参数(如噪声标准差ε、分解层数K),通过适应度函数评估分解质量。
- 适应度函数切换:根据信号特性选择四种熵之一作为优化目标。例如:
- 冲击信号:最小包络熵;
- 复杂非平稳信号:样本熵或排列熵。
- 迭代优化:
- 初始化灰狼种群,随机生成参数组合;
- 计算各参数组合下ICEEMDAN分解的熵值;
- 更新α、β、δ狼的位置,逐步逼近最优解。
- 收敛判断:当熵值变化小于阈值或达到最大迭代次数时终止优化。
五、四种适应度函数的比较与应用场景
熵类型 | 计算复杂度 | 抗噪性 | 适用场景 | 局限性 |
---|---|---|---|---|
包络熵 | 低 | 高 | 周期性冲击信号(如轴承故障) | 对非周期分量敏感度低 |
样本熵 | 中 | 中 | 复杂非平稳信号(如风速数据) | 需预设嵌入维度m和r |
信息熵 | 低 | 低 | 分类与特征选择 | 依赖概率分布假设 |
排列熵 | 高 | 高 | 动力学突变检测(如癫痫EEG) | 对排列模式长度敏感 |
实例分析:
- 混合储能系统功率分配:使用信息熵分配高频与低频分量,GWO优化ICEEMDAN的噪声标准差和边界点,提升储能效率。
- 风速预测:ICEEMDAN-GWO-MKELM模型以样本熵为适应度函数,优化分解层数,提高预测精度。
- 轴承故障诊断:最小包络熵优化ICEEMDAN参数,提取冲击特征,结合SVM分类准确率提升15%。
六、结论与展望
基于GWO优化ICEEMDAN参数的方法,通过灵活切换适应度函数,可针对不同信号特性实现高效分解。未来研究方向包括:
- 多目标优化:结合多种熵函数构建复合适应度指标,平衡分解质量与计算效率。
- 改进算法融合:引入动态权重或混沌映射增强GWO的全局搜索能力。
- 实时性提升:优化ICEEMDAN的迭代策略,适应在线信号处理需求。
该方法在机械故障诊断、能源系统管理、生物医学信号处理等领域具有广泛应用前景,其核心优势在于通过自适应参数调整与多维度熵评估,实现对复杂信号的高精度解析。
📚2 运行结果
2.1 最小包络熵作为适应度函数
2.2 最小样本熵作为适应度函数
2.3 最小信息熵作为适应度函数
2.4 最小排列熵作为适应度函数
部分代码:
% Main loop
while l<Max_iter
for i=1:size(Positions,1)
% Return back the search agents that go beyond the boundaries of the search space
Flag4ub=Positions(i,:)>ub;
Flag4lb=Positions(i,:)<lb;
Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;
% Calculate objective function for each search agent
fitness=fobj(Positions(i,:),da);
% Update Alpha, Beta, and Delta
if fitness<Alpha_score
Alpha_score=fitness; % Update alpha
Alpha_pos=Positions(i,:);
end
if fitness>Alpha_score && fitness<Beta_score
Beta_score=fitness; % Update beta
Beta_pos=Positions(i,:);
end
if fitness>Alpha_score && fitness>Beta_score && fitness<Delta_score
Delta_score=fitness; % Update delta
Delta_pos=Positions(i,:);
end
end
a=2-l*((2)/Max_iter); % a decreases linearly fron 2 to 0
% Update the Position of search agents including omegas
for i=1:size(Positions,1)
for j=1:size(Positions,2)
r1=rand(); % r1 is a random number in [0,1]
r2=rand(); % r2 is a random number in [0,1]
A1=2*a*r1-a; % Equation (3.3)
C1=2*r2; % Equation (3.4)
D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1
X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1
r1=rand();
r2=rand();
A2=2*a*r1-a; % Equation (3.3)
C2=2*r2; % Equation (3.4)
D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2
X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2
r1=rand();
r2=rand();
A3=2*a*r1-a; % Equation (3.3)
C3=2*r2; % Equation (3.4)
D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3
X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3
Positions(i,j)=(X1+X2+X3)/3;% Equation (3.7)
end
end
l=l+1;
Convergence_curve(l)=Alpha_score;
disp(['GWO: At iteration ', num2str(l), ' ,the best fitness is ', num2str(Alpha_score)])
disp(['GWO: At iteration ',num2str(l),'the best position is:[',num2str(Alpha_pos(1)),',',num2str(fix(Alpha_pos(2))),']'])
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取