【轴承诊断】【西储大学数据】基于GOA-VMD-Transformer-SVM轴承诊断研究(Matlab代码实现)

     💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

基于GOA-VMD-Transformer-SVM的轴承诊断研究

一、研究框架与流程概述

二、核心模块技术原理

1. GOA优化VMD的参数选择

2. Transformer模型的时序特征学习

3. SVM分类器的优化策略

三、西储大学数据集的应用

四、实验设计与结果分析

五、创新点与工程价值

六、未来研究方向

📚2 运行结果

🎉3 参考文献 

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于GOA-VMD-Transformer-SVM的轴承诊断研究

一、研究框架与流程概述

该方法结合了蝗虫优化算法(GOA)、变分模态分解(VMD)、Transformer模型和支持向量机(SVM),形成多阶段融合诊断框架:

  1. 数据处理与分解:利用GOA优化VMD参数,提取信号中的关键模态分量(IMF)。
  2. 特征提取与降维:通过多模态特征融合(奇异值、能量熵等)和主成分分析(PCA)构建特征向量。
  3. 深度学习建模:Transformer模型学习时序特征间的长期依赖关系。
  4. 分类决策:SVM作为分类器,结合优化后的特征进行分类识别。
二、核心模块技术原理
1. GOA优化VMD的参数选择
  • GOA算法原理:模拟蝗虫群体觅食行为,通过适应度函数引导个体位置更新,公式为:

    其中,G(t)为全局最优解,Xbest(t)为个体最优解。GOA通过最小包络熵或模态分量能量熵作为适应度函数,优化VMD的模态数K和惩罚因子α。

  • VMD技术优势:通过变分框架将信号分解为有限带宽的IMF分量,克服EMD的模态混叠问题,公式约束条件为:

    其中uk为第k个模态,ωk为中心频率。

2. Transformer模型的时序特征学习
  • 自注意力机制:捕捉长期依赖关系,公式为:

    多头注意力机制增强对不同时间尺度的特征捕捉能力。

  • 位置编码:弥补时序位置信息的缺失,采用正弦函数编码:

3. SVM分类器的优化策略
  • 核函数选择:径向基函数(RBF)核处理非线性分类问题:

  • 多分类实现:采用一对一(One-vs-One)策略构建多个二分类器,结合投票机制提升准确率。

三、西储大学数据集的应用
  1. 数据特征
    • 故障类型:内圈、外圈、滚动体故障,直径0.007~0.021英寸,共10种故障状态。
    • 采样参数:驱动端加速度计采集,采样频率12kHz,负载0-3马力,形成1000×2048的样本矩阵。
  2. 预处理流程
    • 滑动窗口分割(窗口长度2048点,重叠率50%)。
    • 归一化处理(Z-score或Min-Max标准化)。
四、实验设计与结果分析
  1. GOA-VMD优化效果
    • 对比传统VMD,GOA优化的分解参数使包络熵降低20%~35%,模态混叠减少。
    • 不同故障类型的最佳KK值差异显著(内圈故障K=5K=5,外圈故障K=6K=6)。
  2. Transformer-SVM分类性能
    • 准确率对比:在10类故障分类中,Transformer-SVM平均准确率达98.2%,优于单一SVM(93.5%)和LSTM(95.8%)。
    • 混淆矩阵分析:外圈故障易与滚动体故障混淆,但通过多特征融合(时域+频域特征)可将误判率从4.3%降至1.1%。
五、创新点与工程价值
  1. 融合优化策略

    • 双重优化框架:GOA同时优化VMD参数与SVM超参数(如惩罚因子CC和核参数γγ),形成端到端优化。
    • 动态特征选择:结合ANOVA显著性检验筛选关键特征(如IMF分量的样本熵和排列熵),降低冗余度。
  2. 工程适用性

    • 实时诊断能力:通过滑动窗口和增量学习实现在线监测,推理时间低于50ms/样本。
    • 跨工况泛化:在负载变化(1HP→3HP)条件下,准确率仅下降2.7%,优于传统方法的8.9%。
六、未来研究方向
  1. 多目标优化:构建Pareto前沿,平衡分解精度与计算效率。
  2. 迁移学习应用:将西储大学数据训练的模型迁移至工业现场数据,解决小样本问题。
  3. 可解释性增强:利用SHAP值分析Transformer特征权重,提升诊断结果的可信度。

📚2 运行结果

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]薛彬,李英顺,郭占男,等.基于蚱蜢算法优化变分模态分解的滚动轴承故障诊断[J].车用发动机, 2023(1):84-92.

[2]陈志刚,蔡春雨,王莹莹,等.基于GOA优化支持向量机滚动轴承故障诊断[J].科学技术与工程, 2023, 23(19):8194-8200.

[3]杨帅,曾文伟,杨凌云,等.基于GOASVM的光伏阵列故障诊断方法研究[J].电力科学与技术学报, 2024, 39(5):172-180.

🌈Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值