👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
文献来源:
随着可再生能源(Renewable Energy Source, RES)的渗透率不断提高,RES 固有的间歇性对电
力系统稳定运行提出新的挑战[1]。近年来电动汽车 (Electric Vehicles, EV)的保有量持续大幅增长[2], EV 集群(EV Cluster, EVC)并网将进一步加剧这个挑战[3]。并网 EVC 作为一种灵活性资源[4],兼具荷、源双重属性,利用 EVC 的灵活性可削弱 RES间歇性对电网运行的不利影响[5]。并网 EVC 与 RES的协同调控已成为提升电网经济性与稳定性的有力手段[6]。
关于 EVC 与 RES 的协同优化与控制,已有广泛而深入的研究,且现有成果已证明两者协同优化
可提高 RES 消纳率[7]、降低系统成本[8]、提升电网稳定性[9]等。本质上,EVC 与 RES 的协同优化是不确定环境下极具复杂性的优化问题[10],首先是 RES固有间歇性与 EVC 功率需求波动的双重不确定性;其次不确定性均具有空间、时间多维度特征,表现为不同区域的 RES 电站在多时段内的功率波动,EV用户入网区域及并、离网时段的随机性等。针对两者协同优化中的复杂不确定性,可采用随机规划[11]和鲁棒优化[12]两类方法。随机规划须预知不确定变量的概率分布特征,但因实际中其分布特征难以准确获取,且计算复杂度高,随机规划具有明显的应用局限性。鲁棒优化则不需获取不确定变量的分布特征,仅对其采用封闭凸集描述,优化目标对于凸集上的任意点,都能确保鲁棒最优解。基于鲁棒优化方法,文献[13-14]均考虑风光出力不确定性,并协同 EVC 有序充电建立鲁棒控制模型,但忽略了 EVC 的不确定性;文献[15]考虑 EV的不确定性制定优化调度策略,但未利用 EV 的电源属性,且优化策略未与 RES 协同;文献[16]考虑RES、市场电价的不确定性,提出多重不确定性下的鲁棒优化策略,但未深入讨论 EVC 的规模及需求的不确定性,适用性有待商榷。文献[17-18]建立的鲁棒优化模型考虑了 RES 与 EVC 的双重不确定性,但不适用于大规模 EVC 的并网场景。现有研究虽已考虑到 RES 与 EVC 的双重复杂不确定性,但 EVC多局限于小规模,且随着 EVC 规模的逐渐扩大,集中式优化将难以应对“维度灾难”。此外,EV 控制模型在现有研究中均是基于用电需求、充放电约束建立,虽然保证了 EV 用户的用电需求,但控制模型显然忽略了用户的需求偏好。实际场景中 EV 用户作为高度自主性个体,其 EV 不一定参与调度策略,忽略 EV 用户的偏好与现实场景存在必然矛盾。
以下是关于电动汽车集群并网模型中三类EV的研究文档的详细分析,涵盖分类定义、充放电特性、负荷预测方法、电网影响机制及模型对比等内容:
一、三类EV的分类标准及定义
在电动汽车集群并网模型中,文献普遍将并网电动汽车按用户需求偏好和充放电灵活性分为以下三类:
-
额定功率充电型(不可调度集)
- 定义:EV仅以固定功率充电,无法调节充放电行为。
- 适用场景:用户对充电完成时间有严格要求(如紧急补电需求)。
- 控制模型:基于固定充电曲线,无需参与电网调度响应。
-
可调节充电型(半可调度集)
- 定义:允许在一定时间窗口内调整充电功率或时段,但不支持放电。
- 关键参数:电池荷电状态(SOC)、预计停车时间、充电需求等。
- 优化目标:在满足用户需求的前提下,通过分时电价引导错峰充电,降低电网峰谷差。
3. 灵活充放电型(全可调度集)
- 定义:支持双向充放电,可作为分布式储能参与电网调频、调压等辅助服务。
- 技术特征:需配备V2G(Vehicle-to-Grid)设备,实现与电网的能量交互。
- 经济性驱动:通过参与电力市场获取充放电价差收益。
二、各类EV的充电特性与电网交互模式
不同技术类型的EV(如BEV、PHEV、HEV)在并网中的行为差异显著:
类型 | 充电特性 | 电网交互模式 | 典型应用 |
---|---|---|---|
BEV | 完全依赖电网充电;充电功率高(如直流快充);需长时间停车补电。 | 单向充电为主;高功率充电可能导致局部电网过载。 | 城市公交、物流车辆等固定路线场景。 |
PHEV | 支持电网充电和燃油补能;充电功率中等(Level 1/2)。 | 可参与V2G放电;混合模式下燃油引擎可作为备用电源。 | 家用车、短途通勤,兼顾长途需求。 |
HEV | 无外接充电功能;能量来自燃油引擎和再生制动。 | 无法主动参与电网调度;仅通过充电桩被动影响负荷。 | 传统燃油车替代,降低碳排放。 |
典型充电技术对比:
- BEV:依赖快充技术(如CCS/CHAdeMO接口),30分钟可恢复100-200英里续航。
- PHEV:多采用Level 2充电(NEMA 14-50接口),兼容J1772标准。
- HEV:无外接充电,电池容量小(<2kWh),能量来自再生制动。
三、负荷预测方法与模型
1. 传统方法
- 蒙特卡洛模拟:结合用户行为(充电时间、SOC需求)生成概率分布负荷曲线。
- 回归分析/SVM:基于历史数据建立充电功率与影响因素(温度、电价)的映射关系。
2. 智能算法
- 强化学习(RL) :通过Q-learning优化PHEV充放电策略,预测误差较传统ANN/RNN降低60%。
- 混合PSO-ANN:预测SOC并动态调整充电优先级,适用于多目标优化场景。
3. 分类预测
- BEV:需考虑快充站布局和用户行程规律,采用时空耦合模型。
- PHEV:基于驾驶模式(纯电/混动)分时段预测负荷,结合燃油补充需求。
- HEV:负荷预测价值较低,主要作为背景负荷考虑。
四、对电网稳定性的影响机制
1. 正向作用
- 调频调压:灵活充放电型EV通过V2G提供无功补偿,改善功率因数。
- 削峰填谷:可调节充电型EV通过分时电价转移负荷,降低峰值需求。
2. 负面影响
- 谐波污染:大规模无序充电导致电流畸变(THD>3.72%),影响变压器寿命。
- 三相不平衡:居民区单相充电桩集中接入引发电压偏移。
- 过载风险:快充站密集区域可能超出配变容量,需动态限功率。
典型案例:
- 有序充电优化:某区域多母线接入EV后,电网峰值降低2.02%,谷值增加4.2%。
- V2G辅助服务:PHEV双向转换器(BPC)实现无缝充放电切换,提升可再生能源消纳。
五、模型对比与优化策略
1. 模型类型
- 确定性优化:以最小化运行成本为目标,忽略风光出力与EV需求的不确定性。
- 鲁棒优化:构建多面体不确定性集合,抵御风光间歇性与负荷波动。
- 分布式优化:采用ADMM算法解耦EV集群与分布式能源,实现协同迭代求解。
2. 调度策略
- 两阶段优化:
- 日前阶段:基于预测数据制定充放电计划,锁定基础负荷。
- 日内阶段:滚动修正计划,结合实时风光出力与EV并网状态。
3. 算法创新
- 改进磷虾群算法:将EV优先级映射为迭代步长,提升功率分配效率。
- 时序灵活性建模:量化EV集群的动态切换能力,优化多时间尺度响应。
六、生命周期与环保性对比
类型 | 生命周期碳排放(吨CO₂/辆) | 优势 | 劣势 |
---|---|---|---|
BEV | 25(2035年预测) | 零运行排放 | 电池生产碳排放高 |
PHEV | 30 | 灵活补能 | 混动模式依赖燃油 |
HEV | 32 | 技术成熟 | 环保效益有限 |
趋势:2035年BEV碳排放较2025年减少36.1%,技术改进驱动显著。
结论与展望
- 技术融合:未来需进一步整合V2G、车路协同(如中的路电耦合框架)与人工智能算法。
- 政策支持:完善分时电价机制与V2G补贴,激励用户参与需求响应。
- 标准化:统一充放电接口与通信协议,降低多类型EV并网复杂度。
以上分析为电动汽车集群并网模型的研究与实践提供了系统性参考,覆盖技术、经济与环境多维度考量。
📚2 运行结果
以下为原文结果:对比图1,可见程序和原文均实现了不同类型电动汽车的调度结果,因为数据的差异和电动汽车接入时间的随机性,优化结果必然存在差异,但从理论来看,两个结果都很完美!
部分代码:
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]许刚,张丙旭,张广超.电动汽车集群并网的分布式鲁棒优化调度模型[J].电工技术学报,2021,36(03):565-578.DOI:10.19595/j.cnki.1000-6753.tces.200531.