💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
摘要
随着城市化进程的快速发展和人们出行需求的多元化,共享单车作为一种便捷、环保的交通方式在全球范围内迅速兴起。然而,共享单车的有效管理和运营面临着巨大的挑战,其中之一便是如何准确预测不同时间段、不同地点的单车需求。传统的预测方法往往无法充分捕捉到共享单车需求的复杂性和多变性。为了解决这一问题,本研究引入了基于长短期记忆神经网络(LSTM)的共享单车租赁预测模型。通过大量历史数据的训练和学习,模型能够学习到共享单车需求的趋势和变化规律,从而进行准确的预测。
1. 引言
共享单车作为一种新型的出行方式,不仅缓解了城市交通压力,还为人们提供了便捷、环保的出行选择。然而,共享单车的投放、调度和管理等问题也随之而来。为了更好地满足用户需求,提高共享单车服务的运营效率,准确预测共享单车需求显得尤为重要。LSTM作为一种改进的循环神经网络(RNN),特别适用于处理和预测具有长期依赖关系的序列数据,因此成为本研究的核心方法。
2. 数据收集与处理
2.1 数据收集
本研究收集了某城市共享单车的历史租赁数据,包括时间、地点、天气、节假日等信息。这些数据是模型训练和学习的基础。
2.2 数据预处理
对收集到的数据进行清洗、整理和标准化处理,包括处理缺失值、异常值,以及数据的归一化或标准化,以适应LSTM模型的要求。
3. 模型构建
3.1 LSTM模型介绍
LSTM是一种RNN变体,设计上能够解决传统RNN在处理长期依赖问题时的局限。它包含遗忘门、输入门和输出门等门控机制,这些机制帮助LSTM在处理长期序列数据时保持信息的长期依赖性和稳定性。
3.2 网络结构设计
构建包含LSTM层的神经网络,一般包括输入层、LSTM层、全连接层和输出层。输入层接收输入特征,LSTM层处理序列数据并捕捉长期依赖关系,全连接层将LSTM层的输出映射到最终预测结果,输出层生成预测结果。
3.3 参数设置与优化
在模型训练阶段,需要详细探讨LSTM模型的参数设置与优化,包括学习率、批处理大小、隐藏层神经元数量以及模型的正则化方式等。通过大量的实验,对每个参数进行细致的调整,以寻找最佳的模型配置。
4. 模型训练与评估
4.1 数据划分
将数据分为训练集、验证集和测试集,分别用于模型的训练、验证和测试。
4.2 训练过程
使用训练数据训练LSTM模型,通过优化算法(如Adam、RMSprop等)调整网络参数以最小化预测误差。
4.3 模型评估
通过交叉验证等方法对训练好的模型进行评估,确保模型的准确性和可靠性。评估指标包括均方根误差(RMSE)、平均绝对误差(MAE)等。
5. 应用效果与讨论
5.1 应用效果
使用LSTM进行共享单车租赁预测具有以下优势:
- 长期依赖捕捉:LSTM能有效捕捉时间序列中的长期依赖关系,相比传统RNN具有更好的预测能力。
- 处理复杂模式:能够处理复杂的时间序列模式,如季节性波动和趋势变化。
- 准确性:在具有长期依赖性的时间序列数据上,LSTM通常能够提供较为准确的预测结果。
5.2 讨论
虽然LSTM模型在共享单车租赁预测上取得了良好的效果,但仍有许多值得进一步研究和探索的方向。例如,可以进一步优化LSTM模型的参数和结构,以提高模型的预测精度和稳定性;探索更多的特征工程方法,将更多的有用信息融入模型中,以提高模型的泛化能力;将该方法应用于其他领域的时间序列数据预测问题中,如电力负荷预测、交通流量预测等。
6. 结论
本研究提出了一种基于LSTM的共享单车租赁预测方法,并通过实验验证了其有效性和可靠性。该方法能够有效地捕捉时间序列数据中的长期依赖性和非线性关系,实现对共享单车需求的准确预测。未来,我们将进一步优化模型,提高预测精度,为共享单车服务的运营和管理提供更加有益的参考。同时,我们还将探索如何将该方法应用于其他领域的时间序列数据预测问题中。
📚2 运行结果
部分代码:
def evaluate_forecasts(Ytest, predicted_data, n_out): # 定义一个函数来评估预测的性能。 mse_dic = [] rmse_dic = [] mae_dic = [] mape_dic = [] r2_dic = [] # 初始化存储各个评估指标的字典。 table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2']) for i in range(n_out): # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标 actual = [float(row[i]) for row in Ytest] #一列列提取 # 从测试集中提取实际值。 predicted = [float(row[i]) for row in predicted_data] # 从预测结果中提取预测值。 mse = mean_squared_error(actual, predicted) # 计算均方误差(MSE)。 mse_dic.append(mse) rmse = sqrt(mean_squared_error(actual, predicted)) # 计算均方根误差(RMSE)。 rmse_dic.append(rmse) mae = mean_absolute_error(actual, predicted) # 计算平均绝对误差(MAE)。 mae_dic.append(mae) MApe = mape(actual, predicted) # 计算平均绝对百分比误差(MAPE)。 mape_dic.append(MApe) r2 = r2_score(actual, predicted) # 计算R平方值(R2)。 r2_dic.append(r2) if n_out == 1: strr = '预测结果指标:' else: strr = '第'+ str(i + 1)+'步预测结果指标:' table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]陈鑫,刘琦.基于时间序列分析的共享单车未来格局预测[J].现代营销(下旬刊), 2017(10):216-216.DOI:10.3969/j.issn.1009-2994.2017.10.174.
[2]焦志伦,金红,刘秉镰,等.大数据驱动下的共享单车短期需求预测——基于机器学习模型的比较分析[J].商业经济与管理, 2018(8):11.DOI:10.14134/j.cnki.cn33-1336/f.2018.08.002.
[3]甘明.基于深度学习的共享单车预测与调度研究[D].杭州电子科技大学,2022.
[4]靳海红,张帅.基于数据分析的共享单车模式与前景研究[J].商情, 2019.
🌈4 Python代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取