基于安时积分法,EKF,UEKF(无迹扩展卡尔曼滤波算法)估算电池SOC研究(Matlab代码实现)

   💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文内容如下:🎁🎁🎁

 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥第一部分——内容介绍

基于安时积分法、EKF与UEKF的电池SOC估算研究

摘要

锂离子电池荷电状态(SOC)的精确估计是电池管理系统(BMS)的核心功能,直接影响电动汽车续航预测、能量管理效率及电池寿命。本文针对传统安时积分法累积误差大、EKF线性化误差显著的问题,提出基于无迹扩展卡尔曼滤波(UEKF)的改进算法。通过二阶Thevenin等效电路模型构建状态空间方程,结合混合动力脉冲特性(HPPC)实验数据完成参数辨识,并在NEDC和UDDS工况下对比安时积分法、EKF与UEKF的估算性能。实验结果表明,UEKF在动态工况下平均误差低于0.5%,最大误差控制在1.5%以内,显著优于EKF(平均误差0.77%、最大误差3.83%)和安时积分法(误差随时间发散),验证了其在非线性系统中的鲁棒性与适应性。

关键词

锂离子电池;荷电状态(SOC);安时积分法;扩展卡尔曼滤波(EKF);无迹扩展卡尔曼滤波(UEKF);二阶Thevenin模型

1 引言

随着电动汽车与储能系统的普及,电池SOC的精确估算成为保障系统安全、延长电池寿命的关键技术。传统安时积分法因简单易实现被广泛应用,但其依赖初始值准确性且存在累积误差,无法满足高精度需求;EKF通过线性化处理非线性系统,虽能修正初始误差,但在强非线性工况下易因泰勒展开截断误差导致滤波发散;UEKF作为EKF的改进算法,采用无迹变换(UT)直接传播状态均值与协方差,避免了线性化过程,显著提升了非线性系统的估计精度。本文基于二阶Thevenin模型,系统对比三种算法在动态工况下的性能差异,为BMS算法选型提供理论依据。

2 电池模型与参数辨识

2.1 二阶Thevenin等效电路模型

为准确描述电池动态特性,本文选用二阶Thevenin模型(图1),其包含欧姆内阻(R₀)、两个RC并联支路(R₁-C₁、R₂-C₂)及开路电压(U_OC)。该模型通过双时间常数刻画电池的极化效应与扩散过程,适用于复杂工况下的SOC估算。

图1 二阶Thevenin等效电路模型
(注:图中包含电池开路电压U_OC、欧姆内阻R₀、两个RC支路及负载电压U_L)

2.2 参数辨识方法

采用HPPC实验完成模型参数辨识:

  1. 欧姆内阻R₀:通过脉冲放电瞬间电压突变与电流比值计算;
  2. 极化参数(R₁、C₁、R₂、C₂):利用脉冲放电后电压恢复曲线的零输入响应与零状态响应,结合最小二乘法拟合时间常数与电阻值;
  3. SOC-OCV关系:通过五阶多项式拟合静置后的开路电压与SOC数据,建立非线性映射函数。

实验结果表明,二阶模型在动态工况下的端电压模拟误差低于1.5%,验证了模型的有效性。

3 SOC估算算法原理

3.1 安时积分法

安时积分法基于电量守恒原理,通过电流积分计算SOC变化量:

优点:计算简单,易于硬件实现;
缺点:依赖初始SOC准确性,存在累积误差,且未考虑温度、老化等因素对电池容量的影响。

3.2 扩展卡尔曼滤波(EKF)

EKF将非线性系统线性化后应用卡尔曼滤波框架,通过泰勒展开近似状态转移与观测方程:

  1. 状态预测:利用系统方程传播状态均值与协方差;
  2. 测量更新:结合观测值修正预测结果,抑制噪声干扰。

优点:能修正初始误差,适应动态工况;
缺点:线性化过程引入截断误差,在强非线性系统中易发散。

3.3 无迹扩展卡尔曼滤波(UEKF)

UEKF采用无迹变换(UT)替代线性化步骤,通过Sigma点集近似状态概率密度函数:

  1. Sigma点生成:根据状态均值与协方差生成2n+1个采样点(n为状态维度);
  2. 状态传播:将Sigma点代入非线性方程,计算传播后的均值与协方差;
  3. 测量更新:与EKF步骤一致,但基于UT变换的结果更接近真实分布。

优点:避免线性化误差,适用于强非线性系统;
缺点:计算复杂度略高于EKF,但现代处理器可实时实现。

4 实验验证与结果分析

4.1 实验设计

  1. 实验平台:基于18650-22P型锂离子电池搭建测试系统,采样频率10Hz;
  2. 工况测试:采用NEDC(城市循环)与UDDS(高速循环)工况,记录电流、电压与温度数据;
  3. 算法实现:在MATLAB/Simulink中搭建二阶Thevenin模型,分别嵌入安时积分法、EKF与UEKF算法进行仿真验证。

4.2 性能对比

表1 三种算法在NEDC与UDDS工况下的SOC估算误差

算法NEDC平均误差(%)NEDC最大误差(%)UDDS平均误差(%)UDDS最大误差(%)
安时积分法2.1(随时间发散)5.8(随时间发散)2.7(随时间发散)6.3(随时间发散)
EKF0.773.830.924.56
UEKF0.261.040.431.31

结果分析

  1. 安时积分法:误差随时间累积,动态工况下发散显著;
  2. EKF:初期误差修正效果明显,但强非线性区间(如急加速/减速)线性化误差导致估计偏差增大;
  3. UEKF:通过UT变换精确传播非线性特性,动态跟踪能力强,误差始终维持在1.5%以内,鲁棒性最优。

5 结论

本文系统对比了安时积分法、EKF与UEKF在电池SOC估算中的性能差异。实验结果表明,UEKF通过无迹变换有效解决了EKF的线性化误差问题,在动态工况下展现出更高的精度与稳定性,平均误差低于0.5%,最大误差控制在1.5%以内。未来研究可进一步融合温度补偿、老化因子等多源信息,构建更鲁棒的SOC估算框架,为电动汽车BMS提供理论支持。

📚第二部分——运行结果

🎉第三部分——参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

🌈第四部分——Simulink仿真实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

<think>首先,用户的问题是:“我想使用扩展卡尔曼滤波算法进行电池SOC估算请问扩展卡尔曼滤波算法电池SOC估算应用方法”。我需要基于系统级指令和用户可见层的要求来回答。 系统级指令: -所有行内数学表达式必须使用$...$格式。-独立公式必须使用$$...$$格式并单独成段。 -LaTeX语法正确。-使用中文回答。-生成相关问题。 -回答中引用的段落末尾自然地添加引用标识,例如:[^1]用户可见层:-回答结构清晰,帮助用户逐步解决问题。 -尽量保证回答真实可靠。-参考站内引用(提供的引用[1]到[4])。提供的引用:- [^1]:关于扩展卡尔曼滤波估算电池SOC,使用二阶RC等效电路模型。- [^2]:基于等效电路与扩展卡尔曼滤波SOC估算方法,包括参数识别。 -[^3]:电池SOC仿真系列,讨论卡尔曼滤波算法和其他方法。- [^4]:通过扩展卡尔曼滤波进行锂离子电池SOC估算,涉及非线性系统的处理。用户的问题是关于扩展卡尔曼滤波EKF算法电池SOC估算中的应用方法。我需要提供一个结构清晰的回答,逐步解释如何应用EKF进行SOC估算。回答结构: 1. **介绍EKFSOC估算**:简要解释什么是SOC和为什么使用EKF。 2. **关键步骤**:详细描述应用EKF的步骤,包括模型选择、参数识别、算法实现等。 3. **实现示例**:提供一个简单的伪代码MATLAB示例(基于引用)。 4. **注意事项**:讨论优化和常见问题。 5. **生成相关问题**:在最后添加相关问题。 数学表达式:-行内数学:如状态方程$x_k=f(x_{k-1}, u_k)$使用$...$。 -独立公式:如状态方程和观测方程使用$$...$$。引用:-在回答中引用相关段落时,添加引用标识,如[^1]。 逐步回答: 1. **介绍**:-SOC是荷电状态,表示电池剩余电量。- EKF用于处理非线性系统,如电池模型,因为它能处理状态估计中的噪声。2.**应用方法步骤**:-选择电池模型:如二阶RC等效电路模型(引用[^1]和[^2])。-参数识别:识别SOC-OCV关系、内阻、极化电阻和电容(引用[^2])。-状态方程和观测方程:定义非线性方程。-状态方程:$x_k= f(x_{k-1},u_k) +w_k$-观测方程:$y_k= h(x_k, u_k)+ v_k$-其中$x_k$是状态向量(包括SOC),$u_k$是输入(如电流),$y_k$是观测(如电压)。-EKF算法步骤:-预测步骤:计算先验状态估计和协方差。-更新步骤:使用测量值更新状态估计。-实现:使用MATLAB或Simulink(引用[^1])。 3. **示例**:-提供一个简化的MATLAB代码示例或伪代码。4.**注意事项**:-模型精度影响估计结果(引用[^3])。-需要准确的初始参数和状态。-优化方法如自适应卡尔曼滤波(引用[^3])。5.**相关问题**:-生成3-5个相关问题,如性能分析、优化方法等。 最终回答结构: -标题:扩展卡尔曼滤波电池SOC估算中的应用方法-正文:分步骤解释。-代码块:如果有示例。 -相关问题:在最后。</think>### 扩展卡尔曼滤波电池SOC估算中的应用方法 电池荷电状态(SOC估算电池管理系统的核心任务,直接影响电池寿命和安全性[^1]。扩展卡尔曼滤波EKF算法通过处理非线性系统噪声,提供高精度的SOC估计。以下基于引用内容,逐步说明EKF电池SOC估算中的应用方法。整个过程包括模型选择、参数识别、算法实现和仿真验证,确保可靠性和实用性。 #### 1. **选择电池等效电路模型** EKF算法依赖准确的电池模型来定义状态方程和观测方程。推荐使用二阶RC等效电路模型(如图1所示),因为它能精确描述电池动态特性,包括欧姆内阻、极化效应和开路电压(OCV)[^1][^2]。模型结构包括: - 电压源:表示SOC与OCV的非线性关系$V_{oc}(SOC)$。 - 串联内阻$R_0$。 - 极化电阻$R_p$和极化电容$C_p$(模拟弛豫效应)。 状态向量定义为$x_k = [SOC_k, V_{p1,k}, V_{p2,k}]^T$,其中$V_{p}$为极化电压,输入$u_k$为电流$I_k$(充电为正,放电为负),输出$y_k$为端电压$V_t$。 #### 2. **参数识别与模型标定** 模型参数需通过实验数据识别,确保EKF估计精度[^2][^3]: - **SOC-OCV关系**:通过静置测试获取不同SOC下的开路电压,拟合曲线如$V_{oc} = a \cdot SOC^3 + b \cdot SOC^2 + c \cdot SOC + d$。 - **内阻$R_0$**:利用脉冲放电测试计算电压变化率。 - **极化电阻$R_p$和电容$C_p$**:通过电化学阻抗谱(EIS)或最小二乘法辨识。 参数识别后,需验证模型在动态工况下的准确性,例如使用UDDS或FUDS测试数据[^3]。 #### 3. **定义状态方程和观测方程** 电池系统是非线性的,EKF通过一阶泰勒展开局部线性化。状态方程描述SOC演化,观测方程关联端电压[^4]: - **状态方程(过程模型)**: $$ x_k = f(x_{k-1}, u_k) + w_k = \begin{bmatrix} SOC_{k-1} - \frac{\eta \Delta t}{Q_n} I_k \\ V_{p1,k-1} e^{-\Delta t / (R_{p1} C_{p1})} + R_{p1} (1 - e^{-\Delta t / (R_{p1} C_{p1})}) I_k \\ V_{p2,k-1} e^{-\Delta t / (R_{p2} C_{p2})} + R_{p2} (1 - e^{-\Delta t / (R_{p2} C_{p2})}) I_k \end{bmatrix} + w_k $$ 其中,$Q_n$为额定容量,$\eta$为库仑效率,$\Delta t$为采样时间,$w_k$为过程噪声(协方差$Q$)。 - **观测方程(测量模型)**: $$ y_k = h(x_k, u_k) + v_k = V_{oc}(SOC_k) - R_0 I_k - V_{p1,k} - V_{p2,k} + v_k $$ 其中,$v_k$为测量噪声(协方差$R$),$V_{oc}(SOC_k)$由SOC-OCV曲线插值得到。 #### 4. **EKF算法实现步骤** EKF分为预测和更新两步,迭代估计SOC[^1][^4]: 1. **初始化**:设置初始状态估计$\hat{x}_0^+$和误差协方差$P_0^+$。 2. **预测步**: - 计算先验状态估计:$\hat{x}_k^- = f(\hat{x}_{k-1}^+, u_k)$。 - 计算先验协方差:$P_k^- = A_k P_{k-1}^+ A_k^T + Q$,其中$A_k$为状态方程的雅可比矩阵$\frac{\partial f}{\partial x} \big|_{x=\hat{x}_{k-1}^+}$。 3. **更新步**: - 计算卡尔曼增益:$K_k = P_k^- H_k^T (H_k P_k^- H_k^T + R)^{-1}$,其中$H_k$为观测方程的雅可比矩阵$\frac{\partial h}{\partial x} \big|_{x=\hat{x}_k^-}$。 - 更新状态估计:$\hat{x}_k^+ = \hat{x}_k^- + K_k (y_k - h(\hat{x}_k^-, u_k))$。 - 更新协方差:$P_k^+ = (I - K_k H_k) P_k^-$。 循环执行以上步骤,实时输出SOC估计值。 #### 5. **MATLAB/Simulink实现示例** 引用[^1]提供了完整的MATLAB程序。以下是简化伪代码: ```matlab % 初始化 x_hat = [SOC0; 0; 0]; % 初始状态 [SOC, V_p1, V_p2] P = eye(3); % 初始协方差矩阵 Q = diag([1e-4, 1e-5, 1e-5]); % 过程噪声协方差 R = 1e-3; % 测量噪声协方差 for k = 1:length(data) % 预测步 x_hat_minus = state_eq(x_hat, I_k); % 状态方程f(x,u) A = jacobian_f(x_hat, I_k); % 雅可比矩阵A_k P_minus = A * P * A' + Q; % 更新步 H = jacobian_h(x_hat_minus, I_k); % 雅可比矩阵H_k K = P_minus * H' / (H * P_minus * H' + R); x_hat = x_hat_minus + K * (Vt_k - obs_eq(x_hat_minus, I_k)); % 观测方程h(x,u) P = (eye(3) - K * H) * P_minus; SOC_est(k) = x_hat(1); % 存储SOC估计值 end ``` - **关键函数**: - `state_eq()`:实现状态方程$f(x,u)$。 - `obs_eq()`:实现观测方程$h(x,u)$。 - `jacobian_f()`和`jacobian_h()`:计算雅可比矩阵(需符号微分或数值近似)。 - 完整代码可参考引用[^1]的Simulink模型,支持参数在线辨识[^3]。 #### 6. **优化与注意事项** - **精度提升**:模型参数误差会导致估计漂移。建议结合双卡尔曼滤波(DEKF)同时估计状态和参数[^3],或在EKF中嵌入自适应噪声调整。 - **初始值问题**:SOC初始值可通过开路电压法校准[^3]。 - **计算效率**:在嵌入式系统中,简化雅可比矩阵计算或使用UKF(无迹卡尔曼滤波)避免求导[^2]。 - **验证**:使用恒流放电或动态工况数据测试,对比安时积分法评估EKF的抗噪声性能[^4]。 通过上述方法,EKF能在噪声环境下实现SOC估计误差<2%,适用于电动汽车和储能系统[^1][^4]。项目实践中,建议优先验证模型参数,再部署算法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值