💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文内容如下:🎁🎁🎁
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥第一部分——内容介绍
基于安时积分法、EKF与UEKF的电池SOC估算研究
摘要
锂离子电池荷电状态(SOC)的精确估计是电池管理系统(BMS)的核心功能,直接影响电动汽车续航预测、能量管理效率及电池寿命。本文针对传统安时积分法累积误差大、EKF线性化误差显著的问题,提出基于无迹扩展卡尔曼滤波(UEKF)的改进算法。通过二阶Thevenin等效电路模型构建状态空间方程,结合混合动力脉冲特性(HPPC)实验数据完成参数辨识,并在NEDC和UDDS工况下对比安时积分法、EKF与UEKF的估算性能。实验结果表明,UEKF在动态工况下平均误差低于0.5%,最大误差控制在1.5%以内,显著优于EKF(平均误差0.77%、最大误差3.83%)和安时积分法(误差随时间发散),验证了其在非线性系统中的鲁棒性与适应性。
关键词
锂离子电池;荷电状态(SOC);安时积分法;扩展卡尔曼滤波(EKF);无迹扩展卡尔曼滤波(UEKF);二阶Thevenin模型
1 引言
随着电动汽车与储能系统的普及,电池SOC的精确估算成为保障系统安全、延长电池寿命的关键技术。传统安时积分法因简单易实现被广泛应用,但其依赖初始值准确性且存在累积误差,无法满足高精度需求;EKF通过线性化处理非线性系统,虽能修正初始误差,但在强非线性工况下易因泰勒展开截断误差导致滤波发散;UEKF作为EKF的改进算法,采用无迹变换(UT)直接传播状态均值与协方差,避免了线性化过程,显著提升了非线性系统的估计精度。本文基于二阶Thevenin模型,系统对比三种算法在动态工况下的性能差异,为BMS算法选型提供理论依据。
2 电池模型与参数辨识
2.1 二阶Thevenin等效电路模型
为准确描述电池动态特性,本文选用二阶Thevenin模型(图1),其包含欧姆内阻(R₀)、两个RC并联支路(R₁-C₁、R₂-C₂)及开路电压(U_OC)。该模型通过双时间常数刻画电池的极化效应与扩散过程,适用于复杂工况下的SOC估算。
图1 二阶Thevenin等效电路模型
(注:图中包含电池开路电压U_OC、欧姆内阻R₀、两个RC支路及负载电压U_L)
2.2 参数辨识方法
采用HPPC实验完成模型参数辨识:
- 欧姆内阻R₀:通过脉冲放电瞬间电压突变与电流比值计算;
- 极化参数(R₁、C₁、R₂、C₂):利用脉冲放电后电压恢复曲线的零输入响应与零状态响应,结合最小二乘法拟合时间常数与电阻值;
- SOC-OCV关系:通过五阶多项式拟合静置后的开路电压与SOC数据,建立非线性映射函数。
实验结果表明,二阶模型在动态工况下的端电压模拟误差低于1.5%,验证了模型的有效性。
3 SOC估算算法原理
3.1 安时积分法
安时积分法基于电量守恒原理,通过电流积分计算SOC变化量:

优点:计算简单,易于硬件实现;
缺点:依赖初始SOC准确性,存在累积误差,且未考虑温度、老化等因素对电池容量的影响。
3.2 扩展卡尔曼滤波(EKF)
EKF将非线性系统线性化后应用卡尔曼滤波框架,通过泰勒展开近似状态转移与观测方程:
- 状态预测:利用系统方程传播状态均值与协方差;
- 测量更新:结合观测值修正预测结果,抑制噪声干扰。
优点:能修正初始误差,适应动态工况;
缺点:线性化过程引入截断误差,在强非线性系统中易发散。
3.3 无迹扩展卡尔曼滤波(UEKF)
UEKF采用无迹变换(UT)替代线性化步骤,通过Sigma点集近似状态概率密度函数:
- Sigma点生成:根据状态均值与协方差生成2n+1个采样点(n为状态维度);
- 状态传播:将Sigma点代入非线性方程,计算传播后的均值与协方差;
- 测量更新:与EKF步骤一致,但基于UT变换的结果更接近真实分布。
优点:避免线性化误差,适用于强非线性系统;
缺点:计算复杂度略高于EKF,但现代处理器可实时实现。
4 实验验证与结果分析
4.1 实验设计
- 实验平台:基于18650-22P型锂离子电池搭建测试系统,采样频率10Hz;
- 工况测试:采用NEDC(城市循环)与UDDS(高速循环)工况,记录电流、电压与温度数据;
- 算法实现:在MATLAB/Simulink中搭建二阶Thevenin模型,分别嵌入安时积分法、EKF与UEKF算法进行仿真验证。
4.2 性能对比
表1 三种算法在NEDC与UDDS工况下的SOC估算误差
| 算法 | NEDC平均误差(%) | NEDC最大误差(%) | UDDS平均误差(%) | UDDS最大误差(%) |
|---|---|---|---|---|
| 安时积分法 | 2.1(随时间发散) | 5.8(随时间发散) | 2.7(随时间发散) | 6.3(随时间发散) |
| EKF | 0.77 | 3.83 | 0.92 | 4.56 |
| UEKF | 0.26 | 1.04 | 0.43 | 1.31 |
结果分析:
- 安时积分法:误差随时间累积,动态工况下发散显著;
- EKF:初期误差修正效果明显,但强非线性区间(如急加速/减速)线性化误差导致估计偏差增大;
- UEKF:通过UT变换精确传播非线性特性,动态跟踪能力强,误差始终维持在1.5%以内,鲁棒性最优。
5 结论
本文系统对比了安时积分法、EKF与UEKF在电池SOC估算中的性能差异。实验结果表明,UEKF通过无迹变换有效解决了EKF的线性化误差问题,在动态工况下展现出更高的精度与稳定性,平均误差低于0.5%,最大误差控制在1.5%以内。未来研究可进一步融合温度补偿、老化因子等多源信息,构建更鲁棒的SOC估算框架,为电动汽车BMS提供理论支持。
📚第二部分——运行结果


🎉第三部分——参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
🌈第四部分——Simulink仿真实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

768

被折叠的 条评论
为什么被折叠?



