[问题描述]
给定一颗有N个节点(编号为1-N)的树。
两个节点a,b(a<b)之间的简单路径上若所有节点编号i均在a,b之间(a≤i≤b),则该路径可标记为特殊路径。
试统计树上一共有多少条特殊路径。
[输入格式]
+ 第一行包含一个整数N,代表节点数
+ 第二行包含N个整数p1,p2,…,pn,代表每个节点的父节点编号。若pi=0,则该节点为树的根节点
[输出数据]
输出树上一共有多少条特殊路径
[补充说明]
+ 0≤pi≤N
+ 有且仅有一个pi=0
+ 输入的图是一棵树
[样例1]
输入:
7
0 5 5 1 4 1 4
输出:
10
[样例2]
输入:
5
2 3 0 2 2
输出:
7
其中样例1的图形示例:
#include<iostream>
using namespace std;
#define MAX_V 10//最大顶点数目
typedef int Status;
typedef struct ArcNode//定义边的结点结构类型
{
int adjvex;//边的终点编号
struct ArcNode *nextarc;//指向下一条边的指针
}ArcNode;
typedef struct VexNode//邻接表的顶点结构
{
int data;//顶点信息
ArcNode *firstarc;//指向第一条与该顶点有关的边的指针
}VexNode;
typedef struct AlGraph//图的邻接表结构类型
{
VexNode Vex[MAX_V];
int vexnum,arcnum;//图包含的顶点数与边的个数
// int vexs[MAX_V];//存放顶点信息
}AlGraph;
Status CreateGraph(AlGraph &G);//创建无向图
Status PrintGraph(AlGraph G);//展示邻接表的无向图
void FindPath(AlGraph &G,int u,int v,int *path,int d,int *visit);//求出图中两个顶点之间的全部简单的路径
int count = 0;//用来记录特殊路径的个数
int main()
{
AlGraph G;
CreateGraph( G);
// PrintGraph( G);
int path[MAX_V];//用来存放路径的函数
for(int u = 1;u <= G.vexnum ;u++)
{
for(int v = u+1;v <= G.vexnum ;v++)
{
int visit[G.vexnum] = {0};//进行访问标记的辅助数组,初始值全为0
FindPath(G, u, v, path, 0, visit);
}
}
cout<<count;
return 0;
}
Status CreateGraph(AlGraph &G)//创建无向图
{
cin>>G.vexnum;//输入顶点数
G.arcnum = G.vexnum - 1;//输入的图是一棵树,所以边的个数比顶点个数减一
for(int i = 1;i <= G.vexnum; i++)
{
G.Vex[i].firstarc = NULL;//邻接表初始化,所有单向链表均为空表
G.Vex[i].data = i; //录入顶点信息
}
ArcNode *p;
for(int i = 1;i <= G.vexnum; i++)
{
int j;//该点的父结点
cin>>j;
if(j == 0)
continue;
p = new ArcNode;
p->adjvex = j;//这条边的起始点是i,终止点是j
p->nextarc = G.Vex[i].firstarc;
G.Vex[i].firstarc = p;
p = new ArcNode;//由于是无向图,所以再创建一个结点表示对称的点
p->adjvex = i;//这条边的起始点是j,终止点是i
p->nextarc = G.Vex[j].firstarc;
G.Vex[j].firstarc = p;
}
return true;
}
Status PrintGraph(AlGraph G)//展示邻接表的无向图
{
ArcNode *p;
for(int i = 1;i <= G.vexnum ;i++)
{
cout<<G.Vex[i].data<<" ";
p = G.Vex[i].firstarc;
while(p)
{
cout<<p->adjvex<<"-";
p = p->nextarc;
}
cout<<endl;
}
}
void FindPath(AlGraph &G,int u,int v,int *path,int d,int *visit)//求出图中两个顶点之间的全部简单的路径
{ //u是起点,v是终点,d表示路径长度
ArcNode *p;
path[d] = u;//将当前起始点放入路径中
visit[u] = 1;//1表示已经访问,防止重复访问
if(u == v)
{ //如果当前起始点等于终止点,表示已经找到一条路径
if(d == 1)
{
count++;
cout<<path[0]<<"-"<<path[1]<<'\n';
}
int min = path[0],max = path[d];
int k = 0;//用于记录中间比两边小的数字的个数
for(int i = 1;i < d;i++)
{
if(min < path[i] && path[i] < max)
{
k++;
if(k == d-1)
{
count++;
cout<<path[0]<<"-"<<path[d]<<'\n';
}
}
}
// for(int i = 0;i <= d;i++)
// {
// cout<<path[i]<<" ";//输出路径中的顶点
// }
// cout<<endl;
}
else
{
p = G.Vex[u].firstarc;//p指向当前起始点的第一个邻接点
while(p)
{
if(visit[p->adjvex] == 0)//如果这个点没有被访问
{
FindPath(G, p->adjvex, v, path, d+1, visit);
visit[p->adjvex] = 0;
}
p = p->nextarc;
}
}
}