寻找图中的特殊路径

这篇文章描述了一个算法问题,给定一棵有N个节点的树,需要找出所有特殊路径(路径上节点编号在a和b之间,包括a和b)。程序通过邻接表表示无向图,使用深度优先搜索寻找两个节点间的路径,并统计满足条件的路径数。
摘要由CSDN通过智能技术生成

[问题描述]

给定一颗有N个节点(编号为1-N)的树。

两个节点a,b(a<b)之间的简单路径上若所有节点编号i均在a,b之间(a≤i≤b),则该路径可标记为特殊路径。

试统计树上一共有多少条特殊路径。

[输入格式]

+ 第一行包含一个整数N,代表节点数

+ 第二行包含N个整数p1,p2,…,pn,代表每个节点的父节点编号。若pi=0,则该节点为树的根节点

[输出数据]

输出树上一共有多少条特殊路径

[补充说明]

+ 0≤pi≤N

+ 有且仅有一个pi=0

+ 输入的图是一棵树

[样例1]

输入:

7

0 5 5 1 4 1 4

输出:

10

[样例2]

输入:

5

2 3 0 2 2

输出:

7

其中样例1的图形示例:

#include<iostream>
using namespace std;
#define MAX_V 10//最大顶点数目 

typedef int Status;
typedef struct ArcNode//定义边的结点结构类型 
{	
	int adjvex;//边的终点编号
	struct ArcNode *nextarc;//指向下一条边的指针 
}ArcNode;
typedef struct VexNode//邻接表的顶点结构 
{
	int data;//顶点信息
	ArcNode *firstarc;//指向第一条与该顶点有关的边的指针 
}VexNode;
typedef struct AlGraph//图的邻接表结构类型 
{	
	VexNode Vex[MAX_V];
	int vexnum,arcnum;//图包含的顶点数与边的个数 
//	int vexs[MAX_V];//存放顶点信息 
}AlGraph;

Status CreateGraph(AlGraph &G);//创建无向图 
Status PrintGraph(AlGraph G);//展示邻接表的无向图
void FindPath(AlGraph &G,int u,int v,int *path,int d,int *visit);//求出图中两个顶点之间的全部简单的路径
int count = 0;//用来记录特殊路径的个数 

int main()
{
	AlGraph G;
	CreateGraph( G);
//	PrintGraph( G);
	int path[MAX_V];//用来存放路径的函数 
	for(int u = 1;u <= G.vexnum ;u++)
	{
		for(int v = u+1;v <= G.vexnum ;v++)
		{
			int visit[G.vexnum] = {0};//进行访问标记的辅助数组,初始值全为0 
			FindPath(G, u, v, path, 0, visit);
		}
	}
	cout<<count;
	return 0;
} 
Status CreateGraph(AlGraph &G)//创建无向图 
{
	cin>>G.vexnum;//输入顶点数 
	G.arcnum = G.vexnum - 1;//输入的图是一棵树,所以边的个数比顶点个数减一 
	for(int i = 1;i <= G.vexnum; i++) 
	{
		G.Vex[i].firstarc = NULL;//邻接表初始化,所有单向链表均为空表
		G.Vex[i].data = i; //录入顶点信息 
	}
	ArcNode *p;
	for(int i = 1;i <= G.vexnum; i++)
	{
		int j;//该点的父结点 
		cin>>j;
		if(j == 0)
			continue;
		p = new ArcNode;
		p->adjvex = j;//这条边的起始点是i,终止点是j 
		p->nextarc = G.Vex[i].firstarc;
		G.Vex[i].firstarc = p;
		p = new ArcNode;//由于是无向图,所以再创建一个结点表示对称的点 
		p->adjvex = i;//这条边的起始点是j,终止点是i 
		p->nextarc = G.Vex[j].firstarc;
		G.Vex[j].firstarc = p;
	} 
	return true;
}
Status PrintGraph(AlGraph G)//展示邻接表的无向图
{
	ArcNode *p;
	for(int i = 1;i <= G.vexnum ;i++)
	{
		cout<<G.Vex[i].data<<" ";
		p = G.Vex[i].firstarc;
		while(p)
		{
			cout<<p->adjvex<<"-";
			p = p->nextarc;
		}
		cout<<endl;
	}
}
void FindPath(AlGraph &G,int u,int v,int *path,int d,int *visit)//求出图中两个顶点之间的全部简单的路径
{						//u是起点,v是终点,d表示路径长度 
	ArcNode *p;
	path[d] = u;//将当前起始点放入路径中
	visit[u] = 1;//1表示已经访问,防止重复访问 
	if(u == v)
	{		//如果当前起始点等于终止点,表示已经找到一条路径 
		if(d == 1)
		{
			count++;
			cout<<path[0]<<"-"<<path[1]<<'\n';
		}
		int min = path[0],max = path[d];
		int k = 0;//用于记录中间比两边小的数字的个数 
		for(int i = 1;i < d;i++)
		{
			if(min < path[i] && path[i] < max)
			{
				k++;
				if(k == d-1)
				{
					count++;
					cout<<path[0]<<"-"<<path[d]<<'\n';
				}
			}
		} 
//		for(int i = 0;i <= d;i++)
//		{
//			cout<<path[i]<<" ";//输出路径中的顶点 
//		}
//		cout<<endl;
	}
	else
	{
		p = G.Vex[u].firstarc;//p指向当前起始点的第一个邻接点 
		while(p)
		{
			if(visit[p->adjvex] == 0)//如果这个点没有被访问 
			{
				FindPath(G, p->adjvex, v, path, d+1, visit);
				visit[p->adjvex] = 0;
			}
			p = p->nextarc;
		}
	}
} 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值