【基于空间模型的道路碰撞频率分析(以设拉子市区为例)】
(这篇文章有点意思,不是直接地研究交通拥堵,而是通过碰撞来描述拥堵)
话题点:交通小区(TAZ)的土地利用类型、撞车频率、地理加权(泊松)回归
模型:地理加权回归(gwr)和地理加权泊松回归(gwpr),(核密度估计发放搜索宽带)
结果:基于验证准则,局部GWPR模型的性能优于全局泊松模型和局部GWR模型
1.研究数据
1.1数据内容
第一类是设拉子市交通运输副部门编制的2019 - 2021年设拉子市城市交通事故位置数据,共34,588起,由警方报告;
第二类是设拉子市土地利用信息层收集自设拉子市。
研究数据描述性统计见表。
1.2数据处理
设拉子市有325个交通区域,在综合交通规划研究的基础上,将其土地利用类型划分为37类,研究自变量之间的相关性,减少建模误差,首先基于模型对自变量的Pearson相关性进行了评价。第一步,将相关性高的变量和其他类似的变量纳入建模。之后,如果自变量之间存在相关性,为了减少自变量之间的相关性造成的模型误差,将变量去除。
最后,基于Pearson模型,将土地利用划分为相关性最低的14类。
研究以面积为基础,确定了以下土地用途:道路网络、住宅单位数量、商业单位数量、文化宗教活动、体育活动、教育、医疗、绿地、农业、行政总部、工业和设施、交通、荒芜和破旧、混合住宅和非住宅,其他用途包括:墓地、牲畜、军事、河流。
流程图:
本研究基于聚合方法和相关约简,在第一步使用Pearson相关检验将37类用户约简为14类。在基于GWR和GWPR模型估算设拉子地区交通事故频率时,通过考虑空间相关性,对观测值的提取结果进行了评价。
2.模型建立
2.1核密度选择
本文研究了“等裂不连续估计函数”方法的公式。使用这种方法,定义了两种情况下的网络内核性能:(1)具有一个节点的内核中心q和(2)同时具有两个节点的内核中心q。
在第一种情况下,定义了以下函数。其中,k(x)为基本核函数,y为核的中心,d为路径y与x之间的距离,h为带宽,节点的度被去除。
在这种情况下,内核性能值与基本内核性能值相同,直到内核部署在最短路径上,并且不检测到节点ds(q,vi) > ds(p,q) > 0,否则当到达a节点时,内核函数值与节点的程度相等。这个过程一直持续到内核中心达到极限。
2.2GWR
地理加权回归通过考虑在复杂性的带或范围内的因变量和自变量,为每个复杂性准备单独的回归方程来做到这一点。在GWR模型中,与OLS模型不同的是,模型在研究区域层面上的系数或参数不是恒定的,而是依赖于空间坐标(空间和地理权重),它们的值和符号都具有空间变异性。
2.3GWPR
2.4估计的准确性衡量
使用了三个统计量来衡量估计的准确性。首先,将AIC作为拟合优度,该AIC度量的最小值表示模型的拟合优度(Bozdogan 1987)。AIC度量的定义如下:
式中,D为模型方差,k为参数个数。
除了本研究中提到的两个标准外,还考虑了BIC、R2、调整后的R2、RMSE、MAD、MSE和MAPE。已有研究表明,AIC和AICc值越低,各自调整后的R2和R2值越低,表明模型越好。BIC基于与AIC类似的物质和误差值评估模型,物质和误差值越接近1,模型越好。
3.结果分析
研究利用土地利用变量对设拉子市325个交通区域的交通事故数量进行了估计。从2019年到2021年,该市报告了34588起交通事故,每个交通区域平均发生106起交通事故(最低7起,最高686起)。
公路网络占24%的流量的平均在每个交通区域区(最小值0,最大值73%),和在城市的某些地区,道路使用的比例明显高于其他。住宅单元平均占交通区域面积的30%,在一些高密度居住区,住宅单元占交通区域面积的比例高达70%(最小0,最大70%)。文化、宗教和旅游用途合计平均占交通面积的1.3%,最大可达设拉子传统地区交通面积的30%(最小为0,最大为30%)。用于医疗保健的面积百分比平均约为1%,体育用途约为0.5%,办公用途平均为1.7%,荒地和废弃土地用途平均为12%,混合住宅和非住宅用途平均为4%。它有一个交通区域。从表2可以看出,自变量之间的相关性几乎90%都在可接受范围内(小于0.4)。
空间统计方法建模的一个重要准则是观测搜索半径的选择。本研究使用核密度估计方法进行了4个搜索半径,选择了300 m半径的观测值覆盖率最好(如下图),因此,模型结果的报告精度更高。
在局部模型中,每单位住宅使用面积增加0.91,在全局模型中,0.97已经有效增加了撞车次数;这些结果与研究(Ouyang and Bejleri 2014)以及住宅和非住宅混合使用在本地模型中有效地增加了1.12个单位的碰撞频率,在全球模型中增加了1.17个单位,研究(Musa and Moses 2014)证实了混合使用对增加碰撞频率的影响。(其他类型用户的影响见表)。在表中,标准差与临界值之差为负值表明变量具有空间相关性。
下表展示了模型的验证结果,其中AIC和AICC值越低,接近1参数R2, RMSE-MSE-MAPE-MAD值越低表明模型越好(Liu et al. 2017)。在此基础上,局部模型比全局模型具有更高的精度。Almasi和Behnoud的研究结果也表明,局部模型在预测碰撞频率方面具有更可接受的准确性
下图显示了局部模型中各区域自变量值的估计,由此可见设拉子市北部住宅使用区域对交通事故发生的变量效应大于其他交通区域。这与研究结果一致(Fuentes et al. 2022;欧阳和Bejleri 2014;Wedagama et al. 2006)。此外,在城市中心使用绿色和娱乐空间的影响比其他地区更容易发生交通事故。行业的影响,设备,和交通事故已获得在南部和南设拉子的中心城市比在其他领域(看到其他用途的影响在不同的交通领域。
下图显示GWPR和通过模型的预测结果与残差的值和R2为所有交通领域,在此基础上可以发现,在交通领域,R2的值更接近于1,残差更接近于零。该模型以较高的准确度预测了碰撞的频率(Kramer 2005)。
4.总结
本研究采用系统的方法,研究了设拉子市交通区域土地利用面积对交通事故发生的影响。在本研究中,第一步在37种城市土地利用类型中,选择了14种土地利用类型。为了减少自变量之间的相关性,所选择的用途是通过合并类似用途的区域来选择的。在第二步中,使用核密度方法选择观测值的合适搜索半径,在接下来的步骤中,采用了局部和全局两种建模方法。研究结果表明,局部模型比全局模型在估计碰撞频率方面具有更好的拟合效果。同时,在GWPR和GWR两种模型中,第一种模型提供了更好的结果。