论文笔记:Measuring exposure and contribution of different types of activity travels to traffic……

 (利用GPS轨迹数据测量不同类型的活动旅行对交通拥堵的暴露和贡献)

话题点:交通拥堵、GPS轨迹、POI、时空活动

模型:提出了一个数据驱动的框架,通过使用GPS轨迹和兴趣点(POI)大数据集来理解城市道路网络中不同活动对交通拥堵的暴露和贡献的时空模式

1.引言

交通拥堵是可持续城市发展的主要障碍之一,造成严重的不利社会和经济影响。在现有的文献中,已经从巨集和微观两个层面对交通拥堵模式进行了检测和分析。在巨集层面,研究人员专注于城市或区域分析,研究更大区域的拥堵模式和趋势。通过将总出行延误建模为人口规模的函数,研究揭示了城市化与大城市交通拥堵程度较高之间的相关性Chang 等人,2017Han 等人,2018).在微观层面上,现有的研究主要集中在分析道路层面的交通状况和传播模式,利用从固定传感器、车辆通信系统或车辆运动轨迹获取的交通流量、速度和体积等信息。D'Andrea和Marcelloni,2017年Zheng和Liu,2017Kothai 等人,2021 年).一些研究已经成功地检测和分析了个别车道和道路交叉口的拥堵情况,利用细粒度的车道级数据(Kan 等人,2019Stetsenko 和 Stelmakh,2020 年).这些研究提供了对拥堵模式的见解,为缓解拥堵模式的策略提供信息,并通过有效的路线规划和实时指导来改进导航系统。

现有的关于人类活动与交通流模式之间关系的研究可以大致分为两类。第一类研究使用低分辨率、聚合和静态的地理空间数据,如土地利用和工作/人口分布数据,以了解人类活动与交通流量模式之间的关系。第二类研究使用高分辨率、分解和动态数据,例如大型人口流动数据集,来研究人类活动与交通流量模式之间的关系。具有手机数据、GPS 轨迹数据和社交媒体数据等地理位置的个人层面数据集已被用作代理,以指示人类的移动模式并进一步探索对日常交通的影响

近年来,越来越多的研究利用综合旅行轨迹或出发地-目的地(OD)旅行数据来分析活动旅行类型。这些数据集能够更全面地捕捉个人出行的画面,包括公共交通智能卡数据、对接和无锁共享单车数据、手机数据和个人 GPS 轨迹数据。利用这些数据集,现有的活动目的推断研究方法主要可分为基于规则的方法、基于概率的方法和基于数据挖掘的方法

基于规则的方法只是使用最接近下车位置的 POI 作为旅行目的地的目的,并结合其他空间和时间约束。例如Furletti等人(2013)应用一个简单的基于重力的规则,该规则分配的兴趣点 (POI) 类别,该类别在缓冲距离内和 POI 的开放时间内最接近行程的目的地位置。与基于规则的框架相比,贝叶斯框架允许整合先验知识,将概率分布分配给参数,这可以从历史数据中获得。此外,已经开发了监督机器学习模型或深度学习模型来建模和预测行程目的(Liao et al., 2022Ermagun等人,2017).这些方法适用于处理大型数据集,通常可实现高精度,但需要大量手动标记的真实数据作为训练集。深度学习模型在可解释性方面也有局限性。

上述研究为从各种地理空间数据集中理解人类活动模式和旅行目的铺平了道路。然而,各种活动类型对城市日常交通的影响,尤其是其在造成交通拥堵中的作用尚不清楚。

本研究旨在调查不同活动(即工作/学校、家庭、生活和交通相关旅行)如何在空间和时间上暴露于交通拥堵的问题。为了实现这一目标,本研究使用 GPS 轨迹和 POI 数据集来识别单个行程的活动类型。然后,采用数据驱动的方法,研究了城市道路网络中不同区域交通拥堵所涉及的出行活动类型。本研究的发现有助于更细致地理解交通拥堵的根本机制,并有助于更好地理解导致交通拥堵时空异质性的活动结构

2、数据与方法

2.1. 研究区域和数据

本研究的研究区域是武汉市城区。武汉是中国中部的一个特大城市,面积为8494公里2截至2015年底,人口为1060万。研究区域为武汉市主城区。本研究以洪山市、武昌市、青山市、江市、江汉市、巧口市、汉阳市7个区为研究区。

2.1.1. POI数据

本研究使用的POI数据集来自高德地图,包含2015年武汉市的20多万个POI。每个 POI 记录都有 POI 的名称和 ID、类别编码、地理坐标和地址等信息。原始 POI 数据集中有 19 个类别。在这项研究中,我们将 POI 分为 4 个主要活动类别,即工作/学校、家庭、生活和交通表1显示主要活动类别、每个主要类别的详细活动类型以及相应的 POI 类型。通过将与这些运输设施相关的POI分类到运输类别下,该研究认识到了这些地点在支持和实现运输连接方面的特定目的(Zhao et al., 2017).与交通相关的活动是前往火车站、地铁站和公共汽车站等交通设施的旅行,以进行进一步的多式联运旅行。

图2显示了研究区域中每种主要类型 POI 的位置和密度分布。中的密度值图2使用核密度法推导,输出单位为 100 m2.搜索半径是根据 Silverman 的经验法则带宽估计 (西尔弗曼,1986).这些密度值表示每个单元的密度大小。

2.1.2. 出租车GPS轨迹数据

出租车GPS轨迹数据集是在武汉市典型工作日(2015年5月4日)从6658辆出租车中收集的。在武汉市,2015年的旅行乘坐出租车出行约占公共交通的15.5%。因此,出租车旅行可以被视为武汉公共交通的重要组成部分。GPS 位置以大约 40-60 秒的常规间隔记录。GPS 轨迹的每条记录都包含包括车辆的 ID、时间戳、位置、速度、方向以及出租车上是否有乘客在内的信息。在这项研究中,我们滤波器原始GPS轨迹数据集,用于提取乘客的轨迹并将其视为行程,因为它们反映了乘客的实际旅行活动。

GPS 轨迹数据在推断每次行程的行程目的之前会进行预处理。首先,地图匹配算法Chen 等人,2014) 用于将所有 GPS 位置链接到道路网络。与道路网络匹配的轨迹可以表示车辆行驶的实际路线,并用于计算每次行程的速度和距离。此外,我们排除了距离小于 500 米或超过 100 公里的行程,因为这些行程主要是由操作错误引起的(Gong et al., 2016).此外,我们还移除了平均时速超过 100 公里/小时(中国的高速公路限速)的行程。生成的数据集包括 217,799 次行程和超过 1400 万条 GPS 记录。

2.2. 方法

图3

图3显示了本研究中的分析框架。首先,本研究从出租车 GPS 轨迹中提取单个行程,并确定每次行程的落点 (DOP)。基于贝叶斯框架,该研究确定了与行程DOP最匹配的POI,从而推断出行程目的。同时,通过将GPS轨迹与道路网络进行匹配并计算道路的行驶速度,可以确定每条道路的交通状况。基于出行目的的推断和交通拥堵的识别,该研究可以进一步探索和分析与活动相关的交通拥堵时空格局。

2.2.1. 行程目的推断

推断行程目的的基本思想是将行程的 DOP 与最有可能是行程目的地的 POI 相关联。

本研究使用贝叶斯框架来推断 POI , 在不同时间段内与每个 DOP 相关联。贝叶斯方法类似于 Huff 模型 (哈夫,1963),它通过将站点的距离和吸引力作为一个因素来建模访问站点的概率。对于每个 DOP,本研究首先确定了可能成为旅行目的地的候选 POI 子集。POI 的开放时间 (H) 和距 DOP 的欧几里得距离阈值 δ = 200 m) 用于识别候选 POI 集。

基于贝叶斯方法,目的地的概率函数:

基于重力模型:

计算具有最高概率值的POI类别:

2.2.2. 拥堵行程检测和活动相关拥堵模式的时空分析
2.2.2.1. 交通拥堵检测

本研究采用交通绩效指数 (TPI)北京市质量技术监督局, 2011) 以测量研究区域的交通状况并检测拥堵情况。TPI 计算自由流动条件下实际行驶时间与理想行驶时间之间的比率,该比率高于 1.5 表示道路拥堵。为了确定每条道路的拥堵速度阈值,我们使用该道路的自由流动速度 (Vfree) 的 0.67 倍Kan 等人,2019).

通过分析与道路匹配的轨迹的速度分布,确定每个路段的Vfree。我们按升序对速度记录进行排序,并将第 85 个百分位的速度值确定为路段的 Vfree Wang 等人,2013).为确保结果可靠,每个路段至少需要 20 条轨迹来计算其 Vfree

2.2.2.2. 活动相关交通拥堵模式的时空分析

本文提出两个与活动相关的拥堵暴露指标,包括活动拥堵比例(PC)和出行比例(PA),研究交通拥堵所涉及的活动的时空模式。PC 是指在特定时间段内在特定路段遇到交通拥堵的所有活动类型的行程百分比。相比之下,PA 用于衡量属于受交通拥堵影响并暴露于交通拥堵的特定活动类型的行程的相对发生率。

一方面,PC专注于进行时空分析,以确定特定路段遇到拥堵的可能性。它有助于识别不同时间段内不同道路的拥堵程度,并深入了解研究区域内拥堵的空间和时间分布。另一方面,PA 量化了每种活动类型在特定时间段内对特定道路拥堵的相对贡献。它有助于确定哪些活动更易造成拥堵,从而可以采取有针对性的干预措施和交通管理策略。

PC的计算基于方程进行运算:

此外,PA的计算基于方程进行操作:

与其他类型的行程相比,在特定时间段内道路上的特定类型的活动的 PA 值较高表明,该活动类型在特定时间段内导致该道路交通拥堵的可能性更高。

最后,我们使用多元聚类方法来发现不同类型活动中具有相似PA值模式的道路的聚类模式 。多元聚类方法利用无监督机器学习方法(即 k 均值),旨在最小化每个数据点与代表其聚类的质心之间的距离,并最大化聚类之间的距离 。聚类数 (k) 从 k = 1 迭代到 k = 10。对于每个 k 值,计算簇内平方和 (WCSS) 值。

确定 k 的最优值的原则是平衡两个相互竞争的目标:最小化数据点与其分配的聚类中心之间的距离,这些聚类中心由 WCSS 指示(这意味着增加聚类的数量),以及最小化聚类数量以避免过多和不必要地复杂的数据分区。然后,在聚类数图中 k 的肘点 – WCSS 被选为最佳聚类数,因为它代表了一种折衷方案,并在这两个目标之间实现了平衡。

3. 结果

3.1. 行程目的推断结果

首先,我们将本研究推断出行的目的与滴滴出行科技股份有限公司(滴滴)的《2016年智能出行大数据报告》的调查结果进行了比较。

比较结果如表2.由于本研究和报告中的样本量不同,因此使用不同类型旅行的比例而不是实际旅行次数进行验证,表二展示了本研究的行程推断结果与滴滴出行报告中报告的结果的相似性。对每种类型的行程的相似程度进行评估,并量化为从两个来源获得的最小结果与最大结果之间的比率。不同类型出行的推断相似性得分平均在80%以上,表明本研究中的出行目的推断与流动性报告之间的一致性令人满意。

下图显示了详细类型的时间模式工作日行程,按每小时汇总。它可以在以下方面揭示图4(a) 与工作和学校有关的旅行有两个高峰:上午的高峰较强,下午的较弱高峰。用餐旅行集中在中午和晚上,人们通常会外出吃晚饭。随着一天中的时间的增加,购物旅行呈增加趋势,下班后的旅行更多。对于其他不太主要的行程,图4显示大多数与交通相关的旅行和医疗旅行发生在早高峰时段。与交通有关的旅行在白天逐渐减少,而医疗旅行在夜间增加。与住宿有关的旅行集中在几乎没有公共交通服务的傍晚时分。

图四(b) 显示了三个主要类别的旅行的时间分布模式,即工作/学校旅行、家庭旅行、生活旅行和与交通有关的旅行。首先,与工作/学校相关的出行主要集中在早高峰时段,下午的高峰期较小。晚上与家庭有关的旅行呈上升趋势,这可能归因于个人在这段时间内完成了日常活动并返回住所。生活出行的高峰期发生在早高峰之后。与其他旅行类型相比,与交通相关的旅行频率较低,并且在早高峰时段达到高峰,没有明显的波动。

3.2. 活动暴露于交通拥堵的时空模式

在接下来的分析中,我们进一步分析了与四种主要活动类型相关的交通拥堵的时空模式,即工作/学校、家庭、生活和与交通相关的旅行。我们特别关注 6:00-20:00 的时间范围,因为这是主要发生交通拥堵的时候。研究周期被划分为 2 小时的时间单位,以更精细的细节分析拥堵模式和活动分布。

首先检查了有交通量的道路数占道路总数的比率。然后,检查每个时期内每个路段的 PC 值,相应的结果显示在图5.该图显示,大多数路段的 PC 值相对较低(低于 0.2),表明只有一小部分通过这些道路的行程会遇到交通拥堵。这表明这些路段通常交通顺畅,不易出现拥堵。但是,在早高峰时段(6:00-10:00)和晚高峰时段(16:00-20:00),拥堵的严重程度会增加。从这些时期观察到的较高的 PC 值可以看出这一点,更多的路段的 PC 值高于 0.6。这些较高的 PC 值表明,通过这些路段的很大一部分行程在高峰时段会遇到拥堵。图5还表明,与早高峰时段相比,夜间时段的拥堵更为严重。这可能归因于一些因素,例如在晚高峰时段,随着人们通勤回家,交通量增加,以及在此期间同时发生的社交和娱乐活动

此外,二环路周边的江区、江汉区、硚口区、武昌区的部分干道拥堵情况持续严重。这些地区拥有众多商业和金融设施,如江汉路步行街、罗士路、武广商圈、韩正街和武汉金融街。与其他地区相比,这些地区表现出更高的活动强度。这些商业和金融中心的存在可能会吸引大量的旅行,由于这些特定地点的交通量和需求增加,导致拥堵。这表明这些道路在一天中容易出现拥堵,表明道路存在潜在的瓶颈或限制基础设施.造成这种拥堵集中在特定道路上的原因可归因于人口密度高、商业设施或道路容量不足等因素。

3.3. 与活动相关的拥堵道路的时空模式

3.3.1. PA值的时空模式

图6图6显示不同时间段和路段的工作/学校、家庭、生活和交通相关活动的 PA 值。道路上的某种行程类型的 PA 值较高表明该行程类型比道路上的其他类型的行程更有可能导致交通拥堵

图6,很明显,不同类型的活动在不同时期和不同路段表现出不同程度的交通拥堵风险。该图显示,与工作/学校相关的旅行在早晨表现出最高的拥堵风险。此外,火车站附近的路段与交通相关的行程的 PA 值较高,表明这些地区与交通行程相关的拥堵加剧。此外,江汉的道路在与生活相关的出行中表现出较高的 PA 值(图1).但是,在这段时间内,没有显着的 PA 值表明与家庭相关的旅行存在拥堵风险。在白天,PA 值主要表示与生活相关的旅行的拥堵风险增加。在此期间,只有少数路段的工作/学校和交通相关行程的 PA 值相对较高。在晚上,与工作/学校相关的旅行的 PA 值下降,而生活和家庭相关旅行的 PA 值增加。这表明,与生活和家庭相关的旅行在晚上更容易受到交通拥堵的影响。值得注意的是,位于火车站附近的路段在一天中与交通相关的行程中始终表现出较高的 PA 值。这一观察结果表明,这些地区存在持续的拥堵,这可能是由于对与火车旅行相关的运输服务的需求所驱动的。

3.3.2. PA 值的聚类结果

然后,对不同时间段内每条道路不同活动的PA值进行多元聚类分析 

为了确定最优的聚类数,我们首先绘制了聚类内平方和(WCSS)与聚类数k之间的关系。结果如以下所示图7,这说明最佳聚类数 (k) 被确定为 3。这种确定基于以下观察结果:当 k 的值等于 3 时,平方和内的总和会显着下降,并且将 k 增加到 4 不会产生类似的大幅减少平方和内的总和。因此,可以推断,将聚类数量增加到 3 个以上并不能显著改善捕获数据中的方差。

图8表3显示 PA 聚类的结果。通过这些统计数据,可以更详细地了解不同活动的每个聚类中保护区值的分布和变异性。

基于每个聚类的 PA 值图8表3,我们深入了解了三个集群下的四种活动类型中的每一种对道路拥堵的影响。值得注意的是,与家庭相关的旅行表明,所有集群的 PA 值波动最小,表明它们在一天中的稳定性。此外,第 2 组和第 3 组中与交通相关的出行的 PA 值与第 1 组相似且显著高于第 1 组,表明与第 1 组相比,第 2 组和第 3 组与交通相关的出行对道路拥堵的贡献更大。

下图提供了对聚类在空间和时间维度上的差异的更深入的理解。在早晨(6:00-10:00),道路拥堵主要由第3组路段主导,主要由工作/学校相关的行程组成。这一观察结果与居民在此期间主要上班或上学的预期一致。在第 3 类中,与运输相关的行程具有最高的 PA 值 (0.09),略高于第 2 类中与运输相关的行程的 PA 值 (0.08),显著高于第 1 类中与运输相关的行程的 PA 值 (0.03)。这表明,研究区域的路段更有可能在早高峰时段因交通相关行程而出现拥堵,这可能是由于居民使用出租车到达地铁站等与交通相关的目的地。

总而言之,揭示了在早上(第 3 类)和晚上(第 1 类)高峰时段导致道路拥堵的出行类型相对均匀。在早高峰时段,大多数人会进行与工作/学校相关的旅行,而在晚高峰时段,拥堵主要是由于人们完成工作或学校承诺时与生活相关的旅行造成的。造成拥堵的出行类型在早高峰和晚高峰时段(第 2 组)之间更加混合,越来越多的人进行与生活相关的出行,但由于交错工作班次和上课时间表,与工作/学校相关的出行也大量存在。这些发现为研究区出行类型的时间分布及其对道路拥堵的影响提供了有价值的见解。

四、讨论与结论

本文提出了一种基于GPS轨迹和POI大数据集的分析框架,用于检测不同活动在时空暴露的方式以及道路拥堵的原因。该框架涉及使用贝叶斯框架推断出租车出行目的。它还包括检测道路拥堵,并通过分析与活动相关的拥堵相关的两个指标来调查与活动相关的交通拥堵的时空模式。研究结果表明,活动的时间模式和空间位置是导致其拥堵暴露的主要因素,并且某些道路更有可能经历与特定类型活动相关的拥堵。导致交通拥堵的出行类型可能在一天中的不同时间有所不同,从早上与工作/学校相关的出行转变为晚上与生活相关的出行。该研究强调了理解不同类型活动的时空模式及其在城市交通交通拥堵中的作用在城市交通交通规划和管理中的重要性。通过分析各种活动类型对交通拥堵的暴露和贡献,为城市交通管理提供了有价值的见解,从而更好地理解特定活动如何影响交通拥堵。

  • 13
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值