数据结构初识

本文深入探讨了数据结构与算法的基本概念,包括时间复杂度、空间复杂度及其计算方法,通过实例展示了常见算法的复杂度分析。从Bubble Sort到Binary Search,讲解了大O表示法的应用和算法优化策略。
摘要由CSDN通过智能技术生成

目录

什么是数据结构?

什么是算法?

算法的复杂度

时间复杂度

大O的渐进表示法

常见时间复杂度计算举例

实例1:  

实例2:

实例3:

实例4:

实例5: 

实例6: 

实例8:  

综上所述

空间复杂度

实例1: 

实例2:

实例3: 

综上所述 

结束语 


什么是数据结构?

数据结构 (Data Structure) 是计算机存储、组织数据的方式,指相互之间存在一种或多种特定关系的数据元素的集合。

什么是算法?

算法 (Algorithm): 就是定义良好的计算过程,他取一个或一组的值为输入,并产生出一个或一组值作为输出。简单来说算法就是一系列的计算步骤,用来将输入数据转化成输出结果。

算法的复杂度

        算法在编写成可执行程序后,运行时需要耗费时间资源和空间( 内存 ) 资源 。因此 衡量一个算法的好坏,一般 是从时间和空间两个维度来衡量的 ,即时间复杂度和空间复杂度。
时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间 。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

时间复杂度

        时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数 ,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法 的时间复杂度。
即:找到某条基本语句与问题规模 N 之间的数学表达式,就是算出了该算法的时间复杂度。

下面一道题目可以进一步了解如何计算

// 请计算一下Func1中++count语句总共执行了多少次?
#include<stdio.h>
void Func1(int N) {
	int count = 0;
	for (int i = 0; i < N; ++i) {
		for (int j = 0; j < N; ++j)
		{
			++count;
		}
	}

	for (int k = 0; k < 2 * N; ++k) {
		++count;
	}
	int M = 10;
	while (M--) {
		++count;
	}

	printf("%d\n", count);
}

实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要 大概执行次数,那么这 里我们使用大 O 的渐进表示法。

因此Func1的时间复杂度应该为 O(N^2)  

O的渐进表示法

O 符号( Big O notation ):是用于描述函数渐进行为的数学符号。
推导大 O 阶方法:
1 、用常数 1 取代运行时间中的所有加法常数。
2 、在修改后的运行次数函数中,只保留最高阶项。
3 、如果最高阶项存在且不是 1 ,则去除与这个项目相乘的常数。得到的结果就是大 O 阶。
使用大 O 的渐进表示法以后, Func1 的时间复杂度为:
N = 10 F(N) = 100
N = 100 F(N) = 10000
N = 1000 F(N) = 1000000
通过上面我们会发现大 O 的渐进表示法 去掉了那些对结果影响不大的项 ,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数 ( 上界 )
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数 ( 下界 )
例如:在一个长度为 N 数组中搜索一个数据 x
最好情况: 1 次找到
最坏情况: N 次找到
平均情况: N/2 次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为 O(N)

常见时间复杂度计算举例

实例1 

// 计算Func2的时间复杂度?
void Func2(int N) {
	int count = 0;
	for (int k = 0; k < 2 * N; ++k)
	{
		++count;
	}
	int M = 10;
	while (M--)
	{
		++count;
	}
	printf("%d\n", count);
}

实际计算为 2*N+10 ,但是我们表示时间复杂度一般用O的渐进表示法,所以最后计算结果为 O(N) 

计算计算复杂度时要加入极限的思考方式

实例2

// 计算Func3的时间复杂度?
void Func3(int N, int M) {
 int count = 0;
 for (int k = 0; k < M; ++ k)
 {
 ++count;
 }
 for (int k = 0; k < N ; ++ k)
 {
 ++count;
 }
 printf("%d\n", count);
}

实际为O(M+N),用O的渐进表示法 -- 当 M 远大于N O(M)

                                                            -- 当 N 远大于M O(N)

                                                            -- 当 N 与 M 一样大 O(N)或者O(M)

实例3

// 计算Func4的时间复杂度?
void Func4(int N) {
 int count = 0;
 for (int k = 0; k < 100; ++ k)
 {
 ++count;
 }
 printf("%d\n", count);
}

实际为O(100)  但是O的渐进表示法 -- O(1)

                                                            -- 这里的1不是代表一次,而是代表常数次

现在的计算机的计算能力都十分的强大了,一般的常数(即使它确实很大)都可以很快的运算出来

实例4

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );

这是一个在字符串中寻找字符的函数,和 strstr 很相似 

最好的情况:开始就找到了,第1次就找到了

最坏的情况:没找到,要找N次

平均的情况:N/2次找到

但是我们这里取 O(N)  -- 因为我们计算时间复杂度的时候倾向于最坏的情况

实例5: 

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n) {
 assert(a);
 for (size_t end = n; end > 0; --end)
 {
 int exchange = 0;
 for (size_t i = 1; i < end; ++i)
 {
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 if (exchange == 0)
 break;
 }
}

符合一个等差数列

1+2+3+……+N-1  = N*(N-1)/2         -- 计算得出还是可以得到 一个 O(N^2)

实例6: 

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x) {
 assert(a);
 int begin = 0;
 int end = n-1;
 // [begin, end]:begin和end是左闭右闭区间,因此有=号
 while (begin <= end)
 {
 int mid = begin + ((end-begin)>>1);
 if (a[mid] < x)
 begin = mid+1;
 else if (a[mid] > x)
 end = mid-1;
 else
 return mid;
 }
 return -1; }

在计算时间复杂度的时候千万不能只看循环,要实际的计算出来,比如这里的二分查找

在二分查找中每次的查找都会缩小1/2的查找空间,因此为O(logN)

 实例7: 

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N) 
{
 if(0 == N)
 return 1;
 
 return Fac(N-1)*N; 
}

在这里一共递归调用了N次 -- O(N)

//修改版
long long Fac(size_t N)
{
	for (size_t i = 0; i < N; ++i)
	{
		printf("%d\n", i);
	}
	if (0 == N)
		return 1;

	return Fac(N - 1) * N;
}

N + N-1 + N-2 …… 2 + 1  -- 等差数列 因此为 O(N^2)

实例8:  

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N) 
{
 if(N < 3)
 return 1;
 
 return Fib(N-1) + Fib(N-2);
}

每次得出一个数都要前两个数相加  2^0+2^1+2^2+……2^(n-1) = 2^n-1   -- 这是一个等比数列

这是一个效率非常低的算法 -- 达到了 O(2^N) 

当N为以下的值时

N 10 1024

N 20 100w -- 估算

N 30 10亿

N 40 1万亿       -- 这是一个巨大的数字了,以现在的计算机的能力来看,这是个很差的算法  

 

优化后

//优化后			//O(N)
long long Fib(size_t N) 
 {
	if (N < 3)
		return 1;

	long long f1 = 1, f2 = 1, f3;
	for (size_t i = 3; i <= N; i++)
	{
		f3 = f1 + f2;
		f1 = f2;
		f2 = f3;
	}

	return	f3;
}

这个时候的时间复杂度就变成了 O(N)

综上所述

1. 实例 1 基本操作执行了 2N+10 次,通过推导大 O 阶方法知道,时间复杂度为 O(N)
2. 实例 2 基本操作执行了 M+N 次,有两个未知数 M N ,时间复杂度为 O(N+M)
3. 实例 3 基本操作执行了 10 次,通过推导大 O 阶方法,时间复杂度为 O(1)
4. 实例 4 基本操作执行最好 1 次,最坏 N 次,时间复杂度一般看最坏,时间复杂度为 O(N)
5. 实例 5 基本操作执行最好 N 次,最坏执行了 (N*(N+1)/2 次,通过推导大 O 阶方法 + 时间复杂度一般看最坏,时间复杂度为 O(N^2)
6. 实例 6 基本操作执行最好 1 次,最坏 O(logN) 次,时间复杂度为 O(logN) ps logN 在算法分析中表示是底数为2 ,对数为 N 。有些地方会写成 lgN
7. 实例 7 通过计算分析发现基本操作递归了 N 次,时间复杂度为 O(N)
8. 实例 8 通过计算分析发现基本操作递归了 2^N 次,时间复杂度为 O(2^N)。

空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中 临时占用存储空间大小的量度 
空间复杂度不是程序占用了多少 bytes 的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。
空间复杂度计算规则基本跟实践复杂度类似,也使用 O 渐进表示法
注意: 函数运行时所需要的栈空间 ( 存储参数、局部变量、一些寄存器信息等 ) 在编译期间已经确定好了,因 此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

不过现在的空间复杂度并不是关注的对象了,因为现在的设备存储空间都比较大

单拿1G = 1024*1024*1024byte  -- 所以通常有空间换时间的思想

实例1 

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n) 
{ 
 assert(a);
 for (size_t end = n; end > 0; --end)
 {
     int exchange = 0;
     for (size_t i = 1; i < end; ++i)
   {

     if (a[i-1] > a[i])
     {
         Swap(&a[i-1], &a[i]);
         exchange = 1;
     }

   }

     if (exchange == 0)
         break;
 }

}

这里的空间复杂度为O(1) -- 以开辟的额外空间来确定空间复杂度,本身接收的说不算的

空间可以重复使用 但是时间是积累的,一去不复返 

实例2

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n) {
	if (n == 0)
		return NULL;

	long long* fibArray = (long long*)malloc((n + 1) * sizeof(long long));
	fibArray[0] = 0;
	fibArray[1] = 1;
	for (int i = 2; i <= n; ++i)
	{
		fibArray[i] = fibArray[i - 1] + fibArray[i - 2];
	}
	return fibArray;
}

空间复杂度为 O(N)  不要被数组所迷惑

实例3 

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N) 
{
 if(N == 0)
 return 1;
 
 return Fac(N-1)*N;
 }

O(N) -- 每个函数的调用都会开辟一个栈空间这里一共有N+1个(Fac(N)~Fac(0)),因此为O(N)

综上所述 

1. 实例 1 使用了常数个额外空间,所以空间复杂度为 O(1)
2. 实例 2 动态开辟了 N 个空间,空间复杂度为 O(N)
3. 实例 3 递归调用了 N 次,开辟了 N 个栈帧,每个栈帧使用了常数个空间。空间复杂度为 O(N)

结束语 

落下几天了…… 

因过竹院逢僧话,偷得浮生半日闲。
                                        -- 唐·李涉 《题鹤林寺僧舍》 

  • 5
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清风玉骨

爱了!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值