题目:
给你一个整数数组 nums
,返回 数组 answer
,其中 answer[i]
等于 nums
中除 nums[i]
之外其余各元素的乘积 。
题目数据 保证 数组 nums
之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。
请 不要使用除法,且在 O(n)
时间复杂度内完成此题。
示例 1:
输入: nums =[1,2,3,4]
输出:[24,12,8,6]
示例 2:
输入: nums = [-1,1,0,-3,3] 输出: [0,0,9,0,0]
代码:
class Solution {
public int[] productExceptSelf(int[] nums) {
int n = nums.length;
int[] answer = new int[n];
//方法1:左右乘积列表,初始化左列表的第一个值为0;右列表的最后一个值为1。
// 逐个乘以原数组值;累计乘法;得到左前缀和右后缀乘积
// 最终将左右列表相同索引相乘
int[] left = new int[n];
left[0] = 1;
for (int i = 1; i < n; i++) {
left[i] = left[i - 1] * nums[i - 1];
}
int[] right = new int[n];
right[n - 1] = 1;
for (int i = n - 2; i >= 0; i--) {
right[i] = right[i + 1] * nums[i + 1];
}
//最终答案
for (int i = 0; i < n; i++) {
answer[i] = left[i] * right[i];
}
return answer;
}
}
关键点:
思路:原始做法就是数组全部相乘除以自身。但题目要求不用除法。转变思路,变成前后缀相乘。比如长度为5的数组。第一个值是1234相乘;第三个值等于0,1乘以3,4。所以可以看做前缀乘以后缀。初始化2个数组,前缀第一个为1;后缀最后一个为1;逐个相乘得到前缀数组和后缀数组。最终叠加相乘即可。
优化:
class Solution {
public int[] productExceptSelf(int[] nums) {
int n = nums.length;
int[] answer = new int[n];
//方法1:左右乘积列表,初始化左列表的第一个值为0;右列表的最后一个值为1。
// 逐个乘以原数组值;累计乘法;得到左前缀和右后缀乘积
// 最终将左右列表相同索引相乘
//优化:省略左数组,直接先得到半成品answer
answer[0] = 1;
for (int i = 1; i < n; i++) {
answer[i] = answer[i - 1] * nums[i - 1];
}
int right = 1;
for (int i = n - 1; i >= 0; i--) {
answer[i] = answer[i] * right;
//省略右数组,使用变动的值替代
right = right * nums[i];
}
return answer;
}
}
关键点:
思路:左右数组只是存储前后缀乘积,可以不使用,降低空间复杂度,直接保存半成品,在补乘动态右后缀。