1、 [NOIP2015 提高组] 神奇的幻方
## 题目描述
幻方是一种很神奇的 $N\times N$ 矩阵:它由数字 $1,2,3,\cdots \cdots ,N \times N$ 构成,且每行、每列及两条对角线上的数字之和都相同。
当 $N$ 为奇数时,我们可以通过下方法构建一个幻方:
首先将 $1$ 写在第一行的中间。
之后,按如下方式从小到大依次填写每个数 $K (K=2,3,\cdots,N \times N)$ :
1. 若 $(K-1)$ 在第一行但不在最后一列,则将 $K$ 填在最后一行, $(K-1)$ 所在列的右一列;
2. 若 $(K-1)$ 在最后一列但不在第一行,则将 $K$ 填在第一列, $(K-1)$ 所在行的上一行;
3. 若 $(K-1)$ 在第一行最后一列,则将 $K$ 填在 $(K-1)$ 的正下方;
4. 若 $(K-1)$ 既不在第一行,也不在最后一列,如果 $(K-1)$ 的右上方还未填数,则将 $K$ 填在 $(K-1)$ 的右上方,否则将 $K$ 填在 $(K-1)$ 的正下方。
现给定 $N$ ,请按上述方法构造 $N \times N$ 的幻方。
## 输入格式
一个正整数 $N$,即幻方的大小。
## 输出格式
共 $N$ 行,每行 $N$ 个整数,即按上述方法构造出的 $N \times N$ 的幻方,相邻两个整数之间用单空格隔开。
## 样例 #1
### 样例输入 #1
```
3
```
### 样例输出 #1
```
8 1 6
3 5 7
4 9 2
```
## 样例 #2
### 样例输入 #2
```
25
```
### 样例输出 #2
```
327 354 381 408 435 462 489 516 543 570 597 624 1 28 55 82 109 136 163 190 217 244 271 298 325
353 380 407 434 461 488 515 542 569 596 623 25 27 54 81 108 135 162 189 216 243 270 297 324 326
379 406 433 460 487 514 541 568 595 622 24 26 53 80 107 134 161 188 215 242 269 296 323 350 352
405 432 459 486 513 540 567 594 621 23 50 52 79 106 133 160 187 214 241 268 295 322 349 351 378
431 458 485 512 539 566 593 620 22 49 51 78 105 132 159 186 213 240 267 294 321 348 375 377 404
457 484 511 538 565 592 619 21 48 75 77 104 131 158 185 212 239 266 293 320 347 374 376 403 430
483 510 537 564 591 618 20 47 74 76 103 130 157 184 211 238 265 292 319 346 373 400 402 429 456
509 536 563 590 617 19 46 73 100 102 129 156 183 210 237 264 291 318 345 372 399 401 428 455 482
535 562 589 616 18 45 72 99 101 128 155 182 209 236 263 290 317 344 371 398 425 427 454 481 508
561 588 615 17 44 71 98 125 127 154 181 208 235 262 289 316 343 370 397 424 426 453 480 507 534
587 614 16 43 70 97 124 126 153 180 207 234 261 288 315 342 369 396 423 450 452 479 506 533 560
613 15 42 69 96 123 150 152 179 206 233 260 287 314 341 368 395 422 449 451 478 505 532 559 586
14 41 68 95 122 149 151 178 205 232 259 286 313 340 367 394 421 448 475 477 504 531 558 585 612
40 67 94 121 148 175 177 204 231 258 285 312 339 366 393 420 447 474 476 503 530 557 584 611 13
66 93 120 147 174 176 203 230 257 284 311 338 365 392 419 446 473 500 502 529 556 583 610 12 39
92 119 146 173 200 202 229 256 283 310 337 364 391 418 445 472 499 501 528 555 582 609 11 38 65
118 145 172 199 201 228 255 282 309 336 363 390 417 444 471 498 525 527 554 581 608 10 37 64 91
144 171 198 225 227 254 281 308 335 362 389 416 443 470 497 524 526 553 580 607 9 36 63 90 117
170 197 224 226 253 280 307 334 361 388 415 442 469 496 523 550 552 579 606 8 35 62 89 116 143
196 223 250 252 279 306 333 360 387 414 441 468 495 522 549 551 578 605 7 34 61 88 115 142 169
222 249 251 278 305 332 359 386 413 440 467 494 521 548 575 577 604 6 33 60 87 114 141 168 195
248 275 277 304 331 358 385 412 439 466 493 520 547 574 576 603 5 32 59 86 113 140 167 194 221
274 276 303 330 357 384 411 438 465 492 519 546 573 600 602 4 31 58 85 112 139 166 193 220 247
300 302 329 356 383 410 437 464 491 518 545 572 599 601 3 30 57 84 111 138 165 192 219 246 273
301 328 355 382 409 436 463 490 517 544 571 598 625 2 29 56 83 110 137 164 191 218 245 272 299
```
## 提示
对于$100\%$的数据,对于全部数据, $1 \leq N \leq 39$ 且 $N$ 为奇数。
NOIp2015 提高组 d1t1
题解思路:定起点“1”所在的行与列,根据题目描述写出四种情况:
a=[[0 for i in range(40)]for i in range(40)]#二维列表40*40
n=int(input())
# 定起点“1”
a[0][n//2]=1
x=0;y=n//2 #1所在的行与列
s=n*n
# 定其他数
for k in range(2,s+1):
if x==0 and y!=n-1: #在第0行,最后一列
a[n-1][y+1]=k #k在最后一列,k-1的右一列
x=n-1;y+=1
elif y==n-1 and x!=0:
a[x-1][0]=k
x=x-1
y=0
elif x==0 and y==n-1:
a[1][n-1]=k
x=1
y=n-1
elif x!=0 and y!=n-1:
if a[x-1][y+1]==0:
a[x-1][y+1]=k
x-=1;y+=1
else:
a[x+1][y]=k
x+=1
continue
# 幻方输出
for i in range(n):
for j in range(n):
print(a[i][j],end=' ')
print("")
2、 [AHOI2001]彩票摇奖
## 题目描述
为了丰富人民群众的生活、支持某些社会公益事业,北塔市设置了一项彩票。该彩票的规则是:
1. 每张彩票上印有 $7$ 个各不相同的号码,且这些号码的取值范围为 $1\sim33$。
2. 每次在兑奖前都会公布一个由七个各不相同的号码构成的中奖号码。
3. 共设置 $7$ 个奖项,特等奖和一等奖至六等奖。
兑奖规则如下:
- 特等奖:要求彩票上 $7$ 个号码都出现在中奖号码中。
- 一等奖:要求彩票上有 $6$ 个号码出现在中奖号码中。
- 二等奖:要求彩票上有 $5$ 个号码出现在中奖号码中。
- 三等奖:要求彩票上有 $4$ 个号码出现在中奖号码中。
- 四等奖:要求彩票上有 $3$ 个号码出现在中奖号码中。
- 五等奖:要求彩票上有 $2$ 个号码出现在中奖号码中。
- 六等奖:要求彩票上有 $1$ 个号码出现在中奖号码中。
注:兑奖时并不考虑彩票上的号码和中奖号码中的各个号码出现的位置。例如,中奖号码为 $23\ 31\ 1\ 14\ 19\ 17\ 18$,则彩票 $12\ 8\ 9\ 23\ 1\ 16\ 7$ 由于其中有两个号码($23$ 和 $1$)出现在中奖号码中,所以该彩票中了五等奖。
现已知中奖号码和小明买的若干张彩票的号码,请你写一个程序帮助小明判断他买的彩票的中奖情况。
## 输入格式
输入的第一行只有一个自然数 $n$,表示小明买的彩票张数;
第二行存放了 $7$ 个介于 $1$ 和 $33$ 之间的自然数,表示中奖号码;
在随后的 $n$ 行中每行都有 $7$ 个介于 $1$ 和 $33$ 之间的自然数,分别表示小明所买的 $n$ 张彩票。
## 输出格式
依次输出小明所买的彩票的中奖情况(中奖的张数),首先输出特等奖的中奖张数,然后依次输出一等奖至六等奖的中奖张数。
## 样例 #1
### 样例输入 #1
```
2
23 31 1 14 19 17 18
12 8 9 23 1 16 7
11 7 10 21 2 9 31
```
### 样例输出 #1
```
0 0 0 0 0 1 1
```
## 提示
#### 数据规模与约定
对于 $100\%$ 的数据,保证 $1 \leq n\lt1000$。
题解思路:
n=int(input())
price=list(map(int,input().split()))
ans=[0 for i in range(7)]
while n:
cnt=0
cai=list(map(int,input().split()))
for j in range(7):
for k in range(7):
if cai[j]==price[k]:
cnt+=1 #共有cnt个号码出现
## print(cnt)
if cnt:
ans[7-cnt]+=1
n-=1
for i in ans:
print(i,end=' ')#输出不换行
3、 【深基5.例10】显示屏
## 题目描述
液晶屏上,每个阿拉伯数字都是可以显示成 $3\times5$ 的点阵的(其中 `X` 表示亮点,`.` 表示暗点)。现在给出数字位数(不超过 $100$)和一串数字,要求输出这些数字在显示屏上的效果。数字的显示方式如同样例输出,注意每个数字之间都有一列间隔。
## 输入格式
第一行输入一个正整数 $n$,表示数字的位数。
第二行输入一个长度为 $n$ 的自然数。
## 输出格式
输出五行,表示显示屏上的数字。
## 样例 #1
### 样例输入 #1
```
10
0123456789
```
### 样例输出 #1
```
XXX...X.XXX.XXX.X.X.XXX.XXX.XXX.XXX.XXX
X.X...X...X...X.X.X.X...X.....X.X.X.X.X
X.X...X.XXX.XXX.XXX.XXX.XXX...X.XXX.XXX
X.X...X.X.....X...X...X.X.X...X.X.X...X
XXX...X.XXX.XXX...X.XXX.XXX...X.XXX.XXX
```
## 提示
数据保证,$1 \leq n \leq 100$。
题解思路:不能一个一个输出,要以一整个矩阵输出:
#输入
n=int(input())
s=input()
#创建5行4n列全.的二维数组
a=[]
maxn=n*4
for i in range(5):
a.append([])#5行
for j in range(maxn):#i行j列
a[i].append(".") #每列为“.”
#显示屏0到9的字符
ls = len(s)
for i in range(ls):
p = i * 4
if s[i] == '0':
a[0][p] = a[0][p+1] = a[0][p+2] = a[1][p] = a[2][p] = a[3][p] = a[4][p] = a[1][p+2]= a[2][p+2] = a[3][p+2] = a[4][p+1] = a[4][p+2] = 'X'
elif s[i] == '1':
a[0][p+2] = a[1][p+2] = a[2][p+2] = a[3][p+2] = a[4][p+2] = 'X'
elif s[i] == '2':
a[0][p] = a[0][p+1] = a[0][p+2] = a[2][p] = a[2][p+1] = a[2][p+2] = a[4][p] = a[4][p+1] = a[4][p+2] = a[1][p+2] = a[3][p] = 'X'
elif s[i] == '3':
a[0][p] = a[0][p + 1] = a[0][p + 2] = a[2][p] = a[2][p + 1] = a[2][p + 2] = a[4][p] = a[4][p + 1] = a[4][p + 2] = a[1][p + 2] = a[3][p + 2] = 'X'
elif s[i] == '4':
a[0][p] = a[0][p+2] = a[1][p] = a[1][p+2] = a[2][p] = a[2][p+1] = a[2][p+2] = a[3][p+2] = a[4][p+2] = 'X'
elif s[i] == '5':
a[0][p] = a[0][p+1] = a[0][p+2] = a[2][p] = a[2][p+1] = a[2][p+2] = a[4][p] = a[4][p+1] = a[4][p+2] = a[1][p] = a[3][p+2] = 'X'
elif s[i] == '6':
a[0][p] = a[0][p + 1] = a[0][p + 2] = a[2][p] = a[2][p + 1] = a[2][p + 2] = a[4][p] = a[4][p + 1] = a[4][p + 2] = a[1][p] = a[3][p + 2] = a[3][p] = 'X'
elif s[i] == '7':
a[0][p] = a[0][p+1] = a[0][p+2] = a[1][p+2] = a[2][p+2] = a[3][p+2] = a[4][p+2] = 'X'
elif s[i] == '8':
a[0][p] = a[0][p + 1] = a[0][p + 2] = a[2][p] = a[2][p + 1] = a[2][p + 2] = a[4][p] = a[4][p + 1] = a[4][p + 2] = a[1][p + 2] = a[3][p + 2] = a[1][p] = a[3][p] = 'X'
elif s[i] == '9':
a[0][p] = a[0][p + 1] = a[0][p + 2] = a[2][p] = a[2][p + 1] = a[2][p + 2] = a[4][p] = a[4][p + 1] = a[4][p + 2] = a[1][p + 2] = a[3][p + 2] = a[1][p] = 'X'
#输出
for i in range(5):
for j in range(n*4-1):#最后一列没有空格
print(a[i][j], end='')
print()
4、 梦中的统计
## 题目背景
Bessie 处于半梦半醒的状态。过了一会儿,她意识到她在数数,不能入睡。
## 题目描述
Bessie 的大脑反应灵敏,仿佛真实地看到了她数过的一个又一个数。她开始注意每一个数码($0 \ldots 9$):每一个数码在计数的过程中出现过多少次?
给出两个整数 $M$ 和 $N$,求在序列 $[M, M + 1, M + 2, \ldots, N - 1, N]$ 中每一个数码出现了多少次。
## 输入格式
第 $1$ 行: 两个用空格分开的整数 $M$ 和 $N$。
## 输出格式
第 $1$ 行: 十个用空格分开的整数,分别表示数码 $0 \ldots 9$ 在序列中出现的次数。
## 样例 #1
### 样例输入 #1
```
129 137
```
### 样例输出 #1
```
1 10 2 9 1 1 1 1 0 1
```
## 提示
数据保证,$1 \leq M \leq N \leq 2 \times 10^9$,$N-M \leq 5 \times 10^5$。
题解思路:遍历数字个十百千位
m,n=map(int,input().split())
s=''
#创建输出数组
ans=[0 for i in range(10)]
'''
##法1: 转换成字符串 会导致超时
for i in range(m,n+1):
s+=(str(i))
#遍历s
for i in s:
if i=='0':
a[0]+=1
elif i=='1':
a[1]+=1
elif i=='2':
a[2]+=1
elif i=='3':
a[3]+=1
elif i=='4':
a[4]+=1
elif i=='5':
a[5]+=1
elif i=='6':
a[6]+=1
elif i=='7':
a[7]+=1
elif i=='8':
a[8]+=1
elif i=='9':
a[9]+=1
## for j in range(10): #for 循环可以代替10个if
## if i==str(j):
## a[j]+=1
##
continue
'''
#法2:遍历个位十位百位千位
for i in range(m,n+1):
if i ==0:
ans[0]+=1
continue ##减少往下走的时间
while i:
ans[i%10]+=1
i//=10
for i in ans:
print(i,end=' ')
注: 转换成字符串 会导致超时
5、 [NOIP2014 普及组] 珠心算测验
## 题目描述
珠心算是一种通过在脑中模拟算盘变化来完成快速运算的一种计算技术。珠心算训练,既能够开发智力,又能够为日常生活带来很多便利,因而在很多学校得到普及。
某学校的珠心算老师采用一种快速考察珠心算加法能力的测验方法。他随机生成一个正整数集合,集合中的数各不相同,然后要求学生回答:其中有多少个数,恰好等于集合中另外两个(不同的)数之和?
最近老师出了一些测验题,请你帮忙求出答案。
(本题目为 2014NOIP 普及 T1)
## 输入格式
共两行,第一行包含一个整数 $n$,表示测试题中给出的正整数个数。
第二行有 $n$ 个正整数,每两个正整数之间用一个空格隔开,表示测试题中给出的正整数。
## 输出格式
一个整数,表示测验题答案。
## 样例 #1
### 样例输入 #1
```
4
1 2 3 4
```
### 样例输出 #1
```
2
```
## 提示
【样例说明】
由 $1+2=3,1+3=4$,故满足测试要求的答案为 $2$。
注意,加数和被加数必须是集合中的两个不同的数。
【数据说明】
对于 $100\%$ 的数据,$3 \leq n \leq 100$,测验题给出的正整数大小不超过 $10,000$。
题解思路:标记法
n=int(input())
book=[0 for i in range(20005)]# book为标记
##a=[0 for i in range(105)]
cnt=0
#输入第二行为列表
a=list(map(int,input().split()))
##a = [int(i) for i in input().split()]
##a.sort()
#标记a[和]为1
for i in range(n):
for j in range(i+1,n):
book[a[i]+a[j]]=1
#寻找1有多少
for i in range(n):
if book[a[i]]:
cnt+=1
print(cnt)
6、 爱与愁的心痛
## 题目背景
(本道题目隐藏了两首歌名,找找看哪~~~)
《爱与愁的故事第一弹·heartache》第一章。
《我为歌狂》当中伍思凯神曲《舞月光》居然没赢给萨顶顶,爱与愁大神心痛啊~~~而且最近还有一些令人伤心的事情,都让人心痛(最近真的很烦哈)……
## 题目描述
最近有 $n$ 个不爽的事,每句话都有一个正整数刺痛值(心理承受力极差)。爱与愁大神想知道连续 $m$ 个刺痛值的和的最小值是多少,但是由于业务繁忙,爱与愁大神只好请你编个程序告诉他。
## 输入格式
第一行有两个用空格隔开的整数,分别代表 $n$ 和 $m$。
第 $2$ 到第 $(n + 1)$ 行,每行一个整数,第 $(i + 1)$ 行的整数 $a_i$ 代表第 $i$ 件事的刺痛值 $a_i$。
## 输出格式
输出一行一个整数,表示连续 $m$ 个刺痛值的和的最小值是多少。
## 样例 #1
### 样例输入 #1
```
8 3
1
4
7
3
1
2
4
3
```
### 样例输出 #1
```
6
```
## 提示
#### 数据规模与约定
- 对于 $30\%$ 的数据,保证 $n \leq 20$。
- 对于 $60\%$ 的数据,保证 $n \leq 100$。
- 对于 $90\%$ 的数据,保证 $n \leq 10^3$。
- 对于 $100\%$ 的数据,保证 $0 \leq m \leq n \leq 3 \times 10^3$,$1 \leq a_i \leq 100$。
题解思路:求最小值可以利用列表排序
n,m=map(int,input().split())
a=[]
ans=[]
4
#输入多行为一个列表
for i in range(n):
a.append(int(input()))
for i in range(n-m+1):
sum=0
for j in range(i,i+m):
sum+=a[j]
ans.append(sum)
ans.sort()
print(ans[0])