【数据结构】时间复杂度_空间复杂度

作者:旧梦拾遗186

专栏:数据结构成长日记

 

每日励志:

如果有一天,你的努力配得上你的梦想,那么你的梦想也绝对不会辜负你的努力。

前言:

小编带大家来学习数据结构中的复杂度问题。

目录

1.算法效率

1.1 如何衡量一个算法的好坏

1.2 算法的复杂度

1.3 复杂度在校招中的考察

2.时间复杂度

2.1 时间复杂度的概念 

 2.2 大O的渐进表示法

2.3常见时间复杂度计算举例  

3. 空间复杂度

 

4. 常见复杂度对比 

5. 复杂度的oj练习 


1.算法效率

1.1 如何衡量一个算法的好坏

如何衡量一个算法的好坏呢?比如对于以下斐波那契数列

long long Fib(int N) {
 if(N < 3)
 return 1;
 
 return Fib(N-1) + Fib(N-2);
}

斐波那契数列的递归实现方式非常简洁,但简洁一定好吗?那该如何衡量其好与坏呢? 

1.2 算法的复杂度

算法效率分析分为两种: 第一种是时间效率,第二种是空间效率 。时间效率被称为时间复杂度,而空间效率 被称作空间复杂度。 时间复杂度主要衡量的是一个算法的运行速度 而空间复杂度主要衡量一个算法所需要 的额外空间 ,在计算机发展的早期,计算机的存储容量小。所以对空间复杂度很是在乎。但是经过计算机 行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法 的空间复杂度。

1.3 复杂度在校招中的考察

2.时间复杂度

2.1 时间复杂度的概念 

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个 函数(数学的带未知数的函数表达式) ,它定量描述了该算法的运行时间。 一 个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知 道。但是我们需要每个算法都上机测试吗? 是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个 分析方式。一个算法所花费的时间与其中语句的执行次数成正比例, 算法中的基本操作的执行次数,为算法 的时间复杂度。
为什么 一 个算法执行所耗费的时间,从理论上说,是不能算出来的?
举个例子:

 即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

举个例子:(不能纯粹的数循环,要看具体的算法逻辑,进行计算)

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N) {
int count = 0;
for (int i = 0; i < N ; ++ i) {
 for (int j = 0; j < N ; ++ j)
 {
 ++count;
 }
}
 
for (int k = 0; k < 2 * N ; ++ k) 
{
 ++count;
 }
int M = 10;
while (M--) 
{
 ++count;
}
printf("%d\n", count);
}

计算次数的时间复杂度函数:n*n+2*n+10;

Func1 执行的基本操作次数 :

N = 10 F(N) = 130
N = 100 F(N) = 10210
N = 1000 F(N) = 1002010
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而 只需要大概执行次数 那么这 里我们使用大O的渐进表示法。

 2.2 O的渐进表示法

O 符号( Big O notation ):是用于描述函数渐进行为的数学符号。
推导大 O 阶方法:
1 、用常数 1 取代运行时间中的所有加法常数。
2 、在修改后的运行次数函数中,只保留最高阶项。
3 、如果最高阶项存在且不是 1 ,则去除与这个项目相乘的常数。得到的结果就是大 O 阶。
使用大 O 的渐进表示法以后, Func1 的时间复杂度为:
N = 10 F(N) = 100
N = 100 F(N) = 10000
N = 1000 F(N) = 1000000
通过上面我们会发现大 O 的渐进表示法 去掉了那些对结果影响不大的项 ,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数 ( 上界 )
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数 ( 下界 )
例如:在一个长度为 N 数组中搜索一个数据 x
最好情况: 1 次找到
最坏情况: N 次找到
平均情况: N/2 次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为 O(N)

2.3常见时间复杂度计算举例  

实例 1
// 计算Func2的时间复杂度?
void Func2(int N) 
{
 int count = 0;
 for (int k = 0; k < 2 * N ; ++ k)
 {
 ++count;
 }
 int M = 10;
 while (M--)
 {
 ++count;
 }
 printf("%d\n", count);
}

实例2:

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
 int count = 0;
 for (int k = 0; k < M; ++ k)
 {
 ++count;
 }
 for (int k = 0; k < N ; ++ k)
 {
 ++count;
 }
 printf("%d\n", count);
}

实例3:

// 计算Func4的时间复杂度?
void Func4(int N) 
{
 int count = 0;
 for (int k = 0; k < 100; ++ k)
 {
 ++count;
 }
 printf("%d\n", count);
}

实例4:

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );

 

 

另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数 ( 上界 )
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数 ( 下界 )

4. 实例4基本操作执行最好1次,最坏N次,时间复杂度一般看最坏,时间复杂度为 O(N)

实例5:

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n) {
 assert(a);
 for (size_t end = n; end > 0; --end)
 {
 int exchange = 0;
 for (size_t i = 1; i < end; ++i)
 {
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 if (exchange == 0)
 break;
 }
}

  这是一个冒泡排序算法。我们需要注意,计算时间复杂度时不能只看循环,这种做法是肤浅的、错误的。我们应该关注算法的内核。就拿这个冒泡算法来说,我们通过图解来表达清楚冒泡排序的核心:

可以看到,最好的情况就是执行 N 次(不是 1 次原因是即使不进行元素交换,此算法也会对数组遍历检查)。最差的情况就是计算 1、2、3……N-2、N-1 这个等差数列之和,即 (N-1)*N/2 ,那么要表示时间复杂度,就要用大 O 的渐进表示法,即去除影响不大的项,O(N^2) 。

实例6:

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x) {
 assert(a);
 int begin = 0;
 int end = n-1;
 // [begin, end]:begin和end是左闭右闭区间,因此有=号
 while (begin <= end)
 {
 int mid = begin + ((end-begin)>>1);
 if (a[mid] < x)
 begin = mid+1;
 else if (a[mid] > x)
 end = mid-1;
 else
 return mid;
 }
 return -1; }

二分查找,具体逻辑如图

 

 

 实例7:

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N) {
 if(0 == N)
 return 1;
 
 return Fac(N-1)*N; }

实例8:

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N) {
 if(N < 3)
 return 1;
 
 return Fib(N-1) + Fib(N-2);
}

 

斐波那契数列算法在现实生活中,没什么用,因为其时间复杂度过大。 

实例答案及分析:
1. 实例 1 基本操作执行了 2N+10 次,通过推导大 O 阶方法知道,时间复杂度为 O(N)
2. 实例 2 基本操作执行了 M+N 次,有两个未知数 M N ,时间复杂度为 O(N+M)
3. 实例 3 基本操作执行了 10 次,通过推导大 O 阶方法,时间复杂度为 O(1)
4. 实例 4 基本操作执行最好 1 次,最坏 N 次,时间复杂度一般看最坏,时间复杂度为 O(N)
5. 实例 5 基本操作执行最好 N 次,最坏执行了 (N*(N+1)/2 次,通过推导大 O 阶方法 + 时间复杂度一般看最
坏,时间复杂度为 O(N^2)
6. 实例 6 基本操作执行最好 1 次,最坏 O(logN) 次,时间复杂度为 O(logN) ps logN 在算法分析中表示是底
数为 2 ,对数为 N 。有些地方会写成 lgN 。(建议通过折纸查找的方式讲解 logN 是怎么计算出来的)
7. 实例 7 通过计算分析发现基本操作递归了 N 次,时间复杂度为 O(N)
8. 实例 8 通过计算分析发现基本操作递归了 2^N 次,时间复杂度为 O(2^N) 。(建议画图递归栈帧的二叉树
讲解)

3. 空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中 临时占用存储空间大小的量度
空间复杂度不是程序占用了多少 bytes 的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。
空间复杂度计算规则基本跟实践复杂度类似,也使用 O 渐进表示法
注意: 函数运行时所需要的栈空间 ( 存储参数、局部变量、一些寄存器信息等 ) 在编译期间已经确定好了,因 此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

 

实例1

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
 assert(a);
 for (size_t end = n; end > 0; --end)
 {
 int exchange = 0;
 for (size_t i = 1; i < end; ++i)
 {
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 if (exchange == 0)
 break;
 }
}

 

实例2

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n) {
 if(n==0)
 return NULL;
 
 long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
 fibArray[0] = 0;
 fibArray[1] = 1;
 for (int i = 2; i <= n ; ++i)
 {
 fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
 }
 return fibArray;
 }

 

实例3

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N) {
 if(N == 0)
 return 1;
 
 return Fac(N-1)*N;
 }

 

实例答案及分析:

1. 实例 1 使用了常数个额外空间,所以空间复杂度为 O(1)
2. 实例 2 动态开辟了 N 个空间,空间复杂度为 O(N)
3. 实例 3 递归调用了 N 次,开辟了 N 个栈帧,每个栈帧使用了常数个空间。空间复杂度为 O(N)

 

4. 常见复杂度对比 

 

 

 

5. 复杂度的oj练习 

解题思路:所有数相加和减去当前数和就是那个所缺的数

int missingNumber(int* nums, int numsSize){
    int sum = 0;
    for(int i = 0;i<numsSize;i++)
    {
        sum+=nums[i];
    }
    int ret = 0;
    for(int i = 0;i<=numsSize;i++)
    {
        ret+=i;
    }
    return ret-sum;
}

 

轮转数组 

 思路一:存放最右边的数,一次右移一个,需要移动K%numsSize次

void rotate(int* nums, int numsSize, int k){
    if (k > numsSize)
    {
        k %= numsSize;
    }
    for (int i = 0; i < k; i++)
    {
        int tmp = nums[numsSize - 1];
        for (int j = numsSize - 1; j >= 1; j--)
        {
            nums[j] = nums[j - 1];
        }
        nums[0] = tmp;
    }
}

但是 可以发现运行超时:

思路二:开辟一个新的数组存放需要移动的数,在把剩余的数存放到新的数组中,最后把新数组中的数字赋值给原来的数组

void rotate(int* nums, int numsSize, int k) {
     if (k >= numsSize)
    {
        k %= numsSize;
    }
    int* arr = (int*)malloc(sizeof(int) * (numsSize+1));
    for (int i = 0; i <k; i++)
    {
        arr[k-i-1] = nums[numsSize - i-1];
    }
    for (int i = k; i < numsSize; i++)
    {
        arr[i] = nums[i-k];
    }
    for(int i = 0;i<numsSize;i++)
    {
        nums[i] = arr[i];
    }
}

思路三:前n-k个逆置,后k个逆置,整体逆置

void right_move(int arr[], int left, int right)
{
    while (left < right)
    {
        int tmp = arr[left];
        arr[left] = arr[right];
        arr[right] = tmp;
        ++left;
        --right;
    }
}
void rotate(int* nums, int numsSize, int k) {
    if (k >= numsSize)
    {
        k %= numsSize;
    }
    right_move(nums, 0, numsSize - 1 - k);
    right_move(nums, numsSize - k, numsSize - 1);
    right_move(nums, 0, numsSize - 1);
}

 

 

结语:

每个人的成长都是能力和想要得到的东西,不断匹配的过程,当你的才华和欲望不匹配时,你就该静下心来学习了,如果小编的总结能对你有所帮助,希望小伙伴们三连加关注哦,你的支持是小编创作的最大动力。

 

  • 8
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 12
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旧梦拾遗186

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值