实现最大公约数的求值 java实现.

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

读入两个数,实现最大公约数的求值
java实现.


一、最大公约数是什么?

欧几里得算法是用来求两个正整数最大公约数的算法。古希腊数学家欧几里得在其著作《The Elements》中最早描述了这种算法,所以被命名为欧几里得算法。
扩展欧几里得算法可用于RSA加密等领域。
假如需要求 45 和 25 两个正整数的最大公约数,用欧几里得算法,是这样进行的:
45 / 25 = 1 (余 20)
25 / 20 = 1(余5)
20 / 5 = 4(余0)

至此,最大公约数为5
以除数和余数反复做除法运算,当余数为 0 时,取当前算式除数为最大公约数,所以就得出了 45 和 25的最大公约数 5。

二、使用步骤

1.引入库

代码如下(示例):

import java.util.Scanner;


## 2.读入数据
代码如下(示例):
import java.util.Scanner;
class CommonDivisor{
public static void main(String[] args) {
	Scanner sc = new Scanner(System.in);
	//读入两个整数
	int m = sc.nextInt();
	int n = sc.nextInt();
	int res = 0;
	//辗转相除法,不确定计算次数,判定条件为余数为0.
	//使用除数与余数不断相除.
	while( m%n != 0){
		res = m % n;
		m=n;
		n=res;
	}
	System.out.println(n);
}

}

总结

1.辗转相除求最大公约数为较简便的算法.
2.程序思路:确实判断条件,当余数为0时,除数即为最大公约数.相除次数未知即采用while循环.
3.程序实现:采用除数与余数的循环赋值.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值