提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
前言
读入两个数,实现最大公约数的求值
java实现.
一、最大公约数是什么?
欧几里得算法是用来求两个正整数最大公约数的算法。古希腊数学家欧几里得在其著作《The Elements》中最早描述了这种算法,所以被命名为欧几里得算法。
扩展欧几里得算法可用于RSA加密等领域。
假如需要求 45 和 25 两个正整数的最大公约数,用欧几里得算法,是这样进行的:
45 / 25 = 1 (余 20)
25 / 20 = 1(余5)
20 / 5 = 4(余0)
至此,最大公约数为5
以除数和余数反复做除法运算,当余数为 0 时,取当前算式除数为最大公约数,所以就得出了 45 和 25的最大公约数 5。
二、使用步骤
1.引入库
代码如下(示例):
import java.util.Scanner;
## 2.读入数据
代码如下(示例):
import java.util.Scanner;
class CommonDivisor{
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
//读入两个整数
int m = sc.nextInt();
int n = sc.nextInt();
int res = 0;
//辗转相除法,不确定计算次数,判定条件为余数为0.
//使用除数与余数不断相除.
while( m%n != 0){
res = m % n;
m=n;
n=res;
}
System.out.println(n);
}
}
总结
1.辗转相除求最大公约数为较简便的算法.
2.程序思路:确实判断条件,当余数为0时,除数即为最大公约数.相除次数未知即采用while循环.
3.程序实现:采用除数与余数的循环赋值.