2025——》NumPy中的np.set_printoptions使用/在什么场景下适合使用np.set_printoptions?如何在数据可视化与报告中使用np.set_printoptions?

1.NumPy中的np.set_printoptions使用:

在 NumPy 中,np.set_printoptions 函数用于自定义数组的打印格式,使输出更符合特定需求。以下是它的详细用法和应用场景:

1.基础语法:

np.set_printoptions(
    precision=None,     # 浮点数的精度(小数点后的位数)
    threshold=None,     # 数组元素超过此值时使用缩略打印
    edgeitems=None,     # 边缘显示的元素数量
    linewidth=None,     # 每行的字符宽度
    suppress=None,      # 是否强制浮点数使用固定点表示法
    nanstr=None,        # NaN的字符串表示
    infstr=None,        # Inf的字符串表示
    formatter=None,     # 自定义格式化函数
    ...
)

2.常见示例:

1. 控制浮点数精度

import numpy as np

x = np.array([1.23456789])
np.set_printoptions(precision=3)
print(x)  # 输出:[1.235]
2. 抑制科学计数法

y = np.array([1e-10, 1e-5, 1e10])
np.set_printoptions(suppress=True)
print(y)  # 输出:[0.         0.00001 10000000000.]
3. 缩略打印大型数组

z = np.arange(100)
np.set_printoptions(threshold=5)  # 只显示边缘元素
print(z)  # 输出:[ 0  1  2 ... 97 98 99]
4. 自定义元素格式

a = np.array([1, 2, 3])
np.set_printoptions(formatter={'all': lambda x: f'*{x}*'})
print(a)  # 输出:[*1* *2* *3*]

3.常用参数详解:

参数 作用
precision 设置浮点数的显示精度(小数点后的位数)。
threshold 当数组元素总数超过此值时,启用缩略打印(显示省略号)。
edgeitems 缩略打印时,数组首尾显示的元素数量。
suppress 若为 True,则强制浮点数使用固定点表示法(如 0.001 而非 1e-3)。
formatter 传入字典,为不同类型的元素指定自定义格式化函数(如 intfloatcomplex)。

4.应用场景:

<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值