MatchesV2



 


import cv2
import tkinter as tk
from tkinter import ttk
from PIL import Image, ImageTk
import numpy as np

class Application(tk.Tk):
    def __init__(self):
        super().__init__()
        self.title("MatchesV2")
        self.geometry("800x600")

        # 初始化全局变量
        self.ix, self.iy = -1, -1
        self.roi_set = False
        self.roi = None
        self.drawing = False
        self.template_loaded = False
        self.match_done = False
        self.template = None
        self.feature_detector = tk.StringVar(value="FAST")
        self.results_text = ""
        self.matches = []
        self.match_status = tk.StringVar(value="等待开始")

        # 打开摄像头
        self.cap = cv2.VideoCapture(0)

        # 创建主画布
        self.canvas = tk.Canvas(self, width=640, height=480)
        self.canvas.pack(side=tk.TOP, padx=10, pady=10)

        # 创建状态标签
        self.status_label = tk.Label(self, textvariable=self.match_status, font=("Arial", 16), fg="red")
        self.status_label.pack(side=tk.TOP)

        # 创建退出按钮
        self.quit_button = tk.Button(self, text="退出", command=self.quit)
        self.quit_button.pack(side=tk.TOP, padx=10, pady=10)

        # 创建选择框
        self.method_frame = tk.Frame(self)
        self.method_frame.pack(side=tk.TOP, padx=10, pady=10)

        self.method_label = tk.Label(self.method_frame, text="特征检测方法:")
        self.method_label.pack(side=tk.LEFT, padx=5)

        detectors = [
            ("FAST", "cv2.FastFeatureDetector_create"),
            ("STAR", "cv2.xfeatures2d.StarDetector_create"),
            ("SIFT", "cv2.xfeatures2d.SIFT_create"),  # 注意 SIFT 可能需要额外安装
            ("SURF", "cv2.xfeatures2d.SURF_create"),  # 注意 SURF 可能需要额外安装
            ("ORB", "cv2.ORB_create"),
            ("MSER", "cv2.MSER_create"),
            ("GFTT", "cv2.GFTTDetector_create"),
            ("HARRIS", "cv2.cornerHarris"),  # HARRIS 不是特征检测器,这里只是为了示例
            ("SimpleBlob", "cv2.SimpleBlobDetector_create"),
            ("模板匹配", "cv2.TM_CCOEFF_NORMED")
        ]

        for text, detector in detectors:
            b = tk.Radiobutton(self.method_frame, text=text, variable=self.feature_detector, value=detector, command=self.select_feature_detector)
            b.pack(side=tk.LEFT)

        # 创建用于显示操作记录和匹配结果的区域
        self.results_frame = tk.Frame(self)
        self.results_frame.pack(side=tk.TOP, fill=tk.X, padx=10, pady=10)

        self.results_label = tk.Label(self.results_frame, text="操作记录与匹配结果:")
        self.results_label.pack(side=tk.TOP, padx=5, pady=5)

        self.results_textbox = tk.Text(self.results_frame, wrap='word', height=10, width=40)
        self.results_textbox.pack(side=tk.TOP, padx=5, pady=5)

        # 绑定鼠标事件
        self.canvas.bind("<ButtonPress-1>", self.on_button_press)
        self.canvas.bind("<B1-Motion>", self.on_mouse_motion)
        self.canvas.bind("<ButtonRelease-1>", self.on_button_release)

        # 启动摄像头读取和显示循环
        self.update_frame()

    def select_feature_detector(self):
        self.results_text += f"选择了特征检测方法:{self.feature_detector.get()}\n"
        self.update_results_text()

    def on_button_press(self, event):
        self.drawing = True
        self.ix, self.iy = event.x, event.y

    def on_mouse_motion(self, event):
        if self.drawing:
            self.canvas.delete("rect")
            self.canvas.create_rectangle(min(self.ix, event.x), min(self.iy, event.y),
                                         max(self.ix, event.x), max(self.iy, event.y),
                                         outline="green", tag="rect")

    def on_button_release(self, event):
        if self.drawing:
            self.drawing = False
            self.canvas.delete("rect")
            self.ix, self.iy = min(self.ix, event.x), min(self.iy, event.y)
            self.roi = self.frame[min(self.iy, event.y):max(self.iy, event.y),
                                  min(self.ix, event.x):max(self.ix, event.x)]
            self.roi_set = True
            self.template = self.roi
            self.results_text += f"选择了区域:({min(self.ix, event.x)}, {min(self.iy, event.y)}) -> ({max(self.ix, event.x)}, {max(self.iy, event.y)})\n"
            self.update_results_text()
            self.match_status.set("检测中")

    def update_results_text(self):
        self.results_textbox.delete(1.0, tk.END)
        self.results_textbox.insert(tk.END, self.results_text)

    def update_frame(self):
        ret, frame = self.cap.read()
        if ret:
            frame = cv2.flip(frame, 1)  # 镜像翻转图像

            # 确保 frame 是一个有效的 numpy 数组
            self.frame = frame.copy()  # 使用 .copy() 来避免引用问题

            # 如果已经设置了 ROI,则进行特征检测或模板匹配
            if self.roi_set and self.template is not None and self.template.size > 0:
                method = self.feature_detector.get()
                if method == "cv2.TM_CCOEFF_NORMED":
                    res = cv2.matchTemplate(self.frame, self.template, eval(method))
                    min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
                    top_left = max_loc
                    bottom_right = (top_left[0] + self.template.shape[1], top_left[1] + self.template.shape[0])
                    cv2.rectangle(self.frame, top_left, bottom_right, 255, 2)
                else:
                    try:
                        detector = eval(method)()
                        keypoints = detector.detect(self.frame)
                        img_with_keypoints = cv2.drawKeypoints(self.frame, keypoints, None, color=(0,255,0), flags=0)
                        self.frame = img_with_keypoints
                    except Exception as e:
                        self.results_text += f"特征检测失败:{str(e)}\n"
                        self.update_results_text()

            # 将OpenCV BGR格式转换为Tkinter PhotoImage格式
            frame_tk = self.cv_to_tk(self.frame)
            self.canvas.create_image(0, 0, anchor=tk.NW, image=frame_tk)
            self.canvas.image = frame_tk

        # 更新并重复调用
        self.after(30, self.update_frame)

    @staticmethod
    def cv_to_tk(image_cv):
        image_cv_rgb = cv2.cvtColor(image_cv, cv2.COLOR_BGR2RGB)
        image_pil = Image.fromarray(image_cv_rgb)
        return ImageTk.PhotoImage(image_pil)

if __name__ == "__main__":
    app = Application()
    app.mainloop()

    # 释放资源
    app.cap.release()



 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值